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ABSTRACT 

This thesis presents an approach to image classification via a Multi-Layer 

Perceptron (MLP) Artificial Neural Network (ANN) on the SRC-6 reconfigurable 

computer for use in classifying Low Probability of Intercept (LPI) radar emitters.  The 

rationale behind the previously unexplored use of new reconfigurable computers 

combined with neural networks for this application is the potential for near real-time 

classification.  Current potential near-peer competitors have access to LPI technology, so 

development of quick classification methods is crucial for ships to determine intent and 

to enable the possibility for self-defense against these types of emitters.  The neural 

network, based on work conducted by Professor Phillip E. Pace of the Naval 

Postgraduate School (NPS), generates integer-cast weights by first using a sequential 

processor to conduct floating-point backpropagation to train the network on potential 

time-frequency images that allows generation of weights with lower overall Root Mean 

Squared (RMS) errors.  The weights are then used in a parallel-processing reconfigurable 

computer for close to real-time classification. A second method of direct pixel 

comparison using Exclusive-Or (XOR) logic is presented as an alternative image 

classification method. Comparisons to similar representations in C++ are provided, for 

use in judging comparative error levels and timing between parallel and sequential 

processing methods.  
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EXECUTIVE SUMMARY 

The purpose of this thesis is to design and test an artificial neural network (ANN) 

architecture for the SRC-6 reconfigurable computer.  An ANN is a model that attempts to 

emulate the complex processing capabilities of the brain, in order to achieve better results 

than standard programming models.  This ANN is used as an image classifier as a part of 

a project to design a complete Low Probability of Intercept (LPI) detection system in a 

reconfigurable computing environment.  LPI emitters have been developed in an effort to 

render current passive detection systems useless.  The potential threat of use of LPI 

emitters by hostile entities against current military units is the reason behind the design of 

this complete LPI detection system.  The potential threat of anti-ship cruise missiles with 

LPI seeker heads is significant enough to warrant a careful study.    The LPI detection 

system consists of three parts, a data input and Quadrature Mirror Filter Bank (QMFB) 

that conducts Digital Signal Processing (DSP), a preprocessing step that converts the data 

into a useable form, and an ANN classification system to interpret the data.  The design 

goals of the overall project were to realize real-time classification of LPI signals through 

the use of a reconfigurable computer. 

Our ANN design is based on a feedforward Multi-Layer Perceptron (MLP) 

architecture.  Significant changes to a typical MLP were required in order to take full 

advantage of the abilities inherent in the SRC-6 reconfigurable computer.  These design 

decisions were the separation of the network weight training program from the network 

execution program, execution of the network using fixed-point integer math, and 

realization of the nonlinear transfer function via a Look-Up Table (LUT).  Design 

decisions were also made according to the goals specific to this particular work, which 

were minimization of SRC-6 hardware requirements and reusability of code.  The result 

of these decisions is a network that executes at approximately ten times the speed of a 

sequential-processor network. The output of this network is compared to sequential-

processor output and is found acceptable for the purpose of classification. This project is 

fully capable of future integration into the complete LPI detection system.  



 xx

An alternative methodology of image comparison is shown that provides 

potentially quicker image comparison. The alternative method uses direct pixel-to-pixel 

comparison between input images and stored comparison images and selects the ‘least 

different’ result.  While simplistic in nature, this method takes advantage of the ability of 

a reconfigurable computer to conduct simultaneous parallel processes. This method has a 

larger demand on hardware resources in its current configuration and thus may not be 

desirable for use in the complete LPI detection system.  
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I. INTRODUCTION  

A. THE CENTRAL PROBLEM AND PURPOSE 

1.  Low Probability of Intercept (LPI) Emitters 

a.  First-generation Systems and Information Communication 
A typical radar system encounters an information dilemma.  To obtain 

information on potential targets, the radar must emit electromagnetic (EM) energy that 

reflects off the target. Processing the reflected energy is then used to obtain range and 

bearing data.  With repeated attempts, this range and bearing data provides estimated 

courses and speeds for those targets.  The development of passive detection receiver 

technologies, however, allowed targets the potential to detect EM emission and obtain 

useful information from the signal. Direction and specific energy characteristic 

information allows the potential identification of emitter types and location.  This 

information, when correlated with known data such as which ships currently carry such 

emitters and what those emitters are used for can be used to determine identification of 

the emitting vessel and possible intent.  For example, if a certain emitter is known to be 

used as a fire-control radar for only a certain type of ship, and the emissions of the radar 

are detected, the illuminated vessel can obtain the information that that particular ship 

class, in a particular direction, is attempting to obtain a fire control solution.  Once the 

particulars of an emitter are known then Electronic Attack (EA) measures such as 

jamming can be used to a greater effect.  Obviously, this two-way flow of information is 

detrimental towards stealth and radar effectiveness, and thus has negative impacts on a 

variety of missions for the military.  Thus, a desire grew to develop  “stealthy” radars that 

do not reveal themselves as easily. 

b. Low Probability of Intercept (LPI) Radars 
LPI radar systems have become an important and developing tactical 

requirement [1].  In simplest terms, a method used to attempt to achieve LPI is spreading 

the emitted energy over a wider range of frequencies using various pulse compression 

techniques.  This allows energies at specific frequencies to be lower and therefore harder  
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to detect.  The ultimate goal of LPI emitter systems is to have the emitted energy become 

indistinguishable from noise for the target, while providing quality information to the 

emitter. 

c. Potential Detection Methodology 
A methodology for use in detection of LPI emitters is detailed by 

Professor Phillip E. Pace in Detecting and Classifying Low Probability of Intercept Radar 

[1].  To date, there have been two theses conducted by students at Naval Postgraduate 

School (NPS) that attempts to implement a portion of this method on the SRC-6 

reconfigurable computer.  The work by Captain Kevin Stoffel, United States Marine 

Corps (USMC), involves conversion of an outside signal into a frequency-time plot of 

data using an Analog to Digital converter connected into QMFBs on the SRC hardware 

[2].  A thesis by Ensign Dane Brown, United States Naval Reserve (USNR), details a 

method for preprocessing the initial frequency-time plot into a binary-pixel bitmap for 

classification on the SRC hardware as well [3]. 

2. Purpose of this Thesis 
The development of the reconfigurable computer involves a compromise between 

two established and successful architectures.  The common computer normally uses a 

general-purpose processor that computes sequentially, that is, executing specific 

instructions on the processor one at a time.  Operating system developments such as 

multithreading may allow the appearance of multiple simultaneous operations but the 

hardware is typically running only one process at a time.  The benefit of this format is 

that the general processor has a great flexibility in what it does, because the operations 

can cause various types of output from various types of input.  The sequential nature of 

the processor, however, may result in time-delay of information, especially in situations 

that require large amounts of processing of the input. 

A different architecture that has been explored is application-specific hardware in 

the form of Application Specific Integrated Circuits (ASICs).  This architecture generally 

uses specific circuitry that conducts a single type or small range of processes on certain 

data types.  An example of this type of circuit would be some of the commonly available 

DSP chips, that are designed specifically for particular kinds of communication 

processing.  The benefit of this type of architecture is it can process at higher speeds, 
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because the nature of input, process, and output is usually a well-understood constant and 

thus the entire architecture is relatively static.  The downside of this is the loss of 

versatility. 

Reconfigurable computing uses Field-Programmable Gate Arrays (FPGAs) to 

provide process-specific circuits.  In the case of the SRC-6 computer, functions called 

macros allow the user establish these circuits. In this way an ASIC-type architecture 

mimics the versatility of software running on a general purpose computer, while allowing 

potential gains in processing ability and speed due to the ability to shape the FPGA to 

efficiently process the data.  This shaping includes parallel-processing hardware schemes, 

that have a potential for speed gains over sequential processors, in spite of the relatively 

low clock speeds of FPGA systems.    

This thesis explores the use of a Feed-forward, Multi-Layer Perceptron (MLP) 

Artificial Neural Network (ANN) architecture to conduct image classification in a 

reconfigurable computing environment.  A MLP ANN can be ‘trained’ to classify images 

from given inputs and, therefore, has the potential to assist in classifying the preprocessed 

data that arrives from the aforementioned QMFB array.  Thus, this ANN has the potential 

to directly contribute towards detection and classification of LPI emitters.  Realizing this 

network in a reconfigurable environment provides the potential to realize significant 

gains in the time required to effectively conduct classification.   

 

B. DESIGN OVERVIEW 

1. Overview of the SRC-6 Reconfigurable Computer 
In 1996 SRC Computers Incorporated was established in Colorado Springs, 

Colorado, by the well known computer entrepreneur Seymour Cray.  The company 

developed the IMPLICIT + EXPLICIT™ architecture, the Carte™ programming 

environment, and the MAP® reconfigurable processor, with the overall goal of increasing 

processor performance [4]. 

a. IMPLICIT + EXPLICIT™ Architecture 
The SRC IMPLICIT + EXPLICIT™ architecture is the overarching 

system by which Dense Logic Devices (DLDs), such as microprocessor and ASIC 
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devices are coupled with Direct Execution Logic (DEL) such as the MAP® 

reconfigurable logic.  A graphical representation of this architecture, taken from a SRC 

Computer white paper on the subject, is shown in Figure 1. 

 

 
Figure 1. IMPLICIT + EXPLICIT™ Architecture (From [4]) 

 

The Carte™ Programming environment allows programmers to tailor 

previous C++ or Fortran code with minor modifications and execute in a reconfigurable 

environment.  For example, the ‘main.c’ code will execute purely on the implicitly-

controlled 2.8 GHz Intel Xeon microprocessor if that is the programmer’s wish.  If the 

programmer decides to execute code on the MAP® DEL processor, it is executed in the 

manner of a function call to a subroutine contained in a separate source-code file with a 

.mc suffix.  These DEL-specific files can include user-generated macros developed in 

Verilog or Very High Speed Integrated Circtuit (VHSIC) Hardware Description 

Language (VHDL), augmenting the capabilities of the C++ language to deal with 

individual bits or optimizing speed by explicitly determining the DEL processes.  The 

overarching nature of the Carte™ programming environment to handle DLD and DEL 

control is shown in Figure 1.  At compile time, these files are combined in an executable 

along with C++ code.  It is important to note that Verilog/VHDL macro programming is 

not essential to running most code on the SRC. Verilog/VHDL coding allows the user, 

however, to directly control the FPGA resources. 
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b. Hardware Environment 
The MAP®  DEL processor is the device that enables the reconfigurability 

of the SRC-6.   The MAP® is comprised of 2 Xilinx XC2V6000 FPGAs for use as user 

logic, six banks of On-Board Memory (OBM) that provide 24MB of Random Access 

Memory (RAM) storage connected to the user logic with a 4800 MB/s bus, a 2400 MB/s 

General Purpose Input/Output (GPIO) connection that provides a communication channel 

directly off the MAP®, and another Xilinx XC2V6000, which acts as a controller.  A 

graphical representation of the interfaces from SRC Computers, Incorporated is provided 

in Figure 2. 

 
Figure 2. MAP® Direct Execution Logic (DEL) Processor (From [4]) 

 

OBM is not the only memory available to the user, because the FPGA 

itself holds 144 Block RAM (BRAM) units of 2048 bytes each.  The way the Carte™ 

environment handles this distinction in code is by making use of OBM explicit in the .mc 

code, while variables and arrays locally called in the .mc code are stored in BRAM.  One 

important item of note is that the user logic 18x18 multipliers share the same input lines 

as the BRAM. Attention must therefore be directed to resource allocation in the case 
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where a program will use large amounts of either multipliers or BRAM.  While this was 

not a problem encountered for this project, expansions of the original ANN design may 

require designers to be aware of this potential conflict, especially if multiple BRAM 

banks are used to achieve simultaneous access for speed of execution.  The FPGA itself 

can be configured to act as a RAM, in a form referred to as distributed select RAM.  The 

distributed select RAM memory method was not pursued in this project. 

2. Data Input and Preprocessing 
The initial requirement for converting the LPI detection system specified in [1] to 

run in a reconfigurable computing environment was the development of a data input 

mechanism.  The thesis work conducted by Kevin M. Stoffel describes a system 

comprising of an Analog-to-Digital Converter coupled with a hardware interface and 

SRC programming that inputs the data from the hardware through a QMFB.  This 

combination of hardware and software allows the generation of 8-bit frequency-time 

plots whose size is constrained by current MAP® hardware limitations.  While these 

constraints are discussed in much greater detail in [2], the end result is an eight-bit pixel 

bitmap that must be then preprocessed for ease of classification. 

The preprocessing portion of the overall LPI detection system converts the eight-

bit pixel bitmap to a single-bit pixel bitmap using a function to apply a threshold to the 

data.  The end product of this code is a NxN square bitmap that is then used by the 

classifying portion to determine the nature of the input.  Initial planning sessions 

envisioned the output of the preprocessing step to be a 32x32 single-bit pixel bitmap.  A 

detailed discussion of the threshold function and preprocessing step is contained in [3].     

3. ANN Image Classifier 
To enable correct classification of potential LPI emitters, a Feed-forward MLP 

ANN was designed. Because the initial discussion agreed upon a 32x32 pixel bitmap 

image as the input source, this became a primary requirement for the initial design.  The 

resulting architecture developed into a 1024-5-5 Feed-forward MLP ANN, which means 

that the network had 1024 inputs, 5 hidden layer nodes, and 5 outputs.  The network 

architecture is displayed in Figure 3. 
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Figure 3. 1024-5-5 ANN Design 

 

The above figure shows the Feed-forward nature of the design, which inputs the 

bitmap on the left to produce an output sequence on the right.  The five hidden layer 

nodes at ‘A’ are coupled with a sigmoid transfer function, while the output layer nodes at 

‘B’ are coupled with a pure linear transfer function.  The ANN weights for each 

connection were generated in an off-chip modeling program that used sequential 

processing and floating-point accuracy for the common backpropagation algorithm to 

minimize Root Mean Squared (RMS) error.  The weights were then converted into 

integer values with 3 decimal bits for use in the on-MAP® Reconfigurable-environment 

ANN (RANN).  The ANN was trained on 5 different representations of preprocessed LPI 

signal bitmaps generated using the open-source Linux tools ‘bitmap’ and ‘bmtoa’.  These 

same bitmaps were used as testing data for the RANN to check for accuracy.  

4. Alternative Image Classification Method 
An alternative method of image classification is provided that uses Exclusive-Or 

(XOR) logic to directly compare stored images against the input.  This method takes 

advantage of the ability of reconfigurable processors to conduct numerous parallel 

processes to achieve considerable speed gains.  The five images previously used for the 

ANN training and testing are stored as sixteen lines of 64-bit data to maximize bandwidth 

use.  Each line of the input image is XOR-compared with the respective lines of the 

stored images.  The result of the comparison is then tallied to count the number of ones, 

which represent differences between the input and stored image.  Because matching 

images produce zero ones, exact matches are quickly and easily found with this method.   
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A threshold is applied to ensure that a stored image is not paired when it differs more 

than ten percent of the total pixels from a stored image, thus providing an indication of 

uncertain output. 

 

C. THESIS ORGANIZATION 
The remainder of this thesis is organized as follows: 

• Chapter II discusses previous work in ANNs, and a background in the 

requirement for image classification.  

• Chapter III discusses the specifics of the images generated for this 

application and the sequential-processor ANN used to generate weights. 

• Chapter IV examines the ANN design used on the SRC-6 reconfigurable 

computer. 

• Chapter V displays the results of the SRC Neural Network against a 

similar network run on a sequential processor in floating-point arithmetic. 

• Chapter VI examines the XOR comparison method of image comparison, 

and provides initial results. 

• Chapter VI provides an overall summary of results, the conclusions drawn 

from those results, and potential future work. 



9 

II. BACKGROUND 

A. NEURAL NETWORKS 

1. History of Development 
The ANN is inspired by the brain.  Hermann von Helmholtz, Ernst Mach, and 

Ivan Pavlov made significant contributions to neural research at the beginning of the 20th 

Century that led to ANN development [5].  While non-mathematical in nature, the work 

done by these early pioneers was instrumental in development of the concepts used later 

in ANN development. 

The models developed for the brain’s data processing centered on the way that 

neurons are interconnected and communicate.  The key concept developed that the 

connectedness of neurons allowed a large number of simple simultaneous processes that 

result in the complex processing capabilities of the brain.  A typical processor of a home 

computer can conduct numerous sequential instructions per second, but the ability to do 

this processing in parallel is limited by the fundamental structure of the processor itself.  

The motivation for development of a neural processing model is probably best described 

in the 1988 Defense Advanced Research Projects Agency (DARPA) Neural Network 

Study: 

At its most fundamental level, interest in neural networks is prompted by 
two facts:  (a) the nervous system function of even a ‘lesser’ animal can 
easily solve problems that are very difficult for conventional computers, 
including the best computers now available, and (b) the ability to model 
biological nervous system function using man-made machines increases 
understanding of that biological function [6]. 

Work in neural networks therefore seeks to accomplish with multiple complex 

connections and simple processes what cannot be done with complex processors with 

simpler connections.  The goal is the construction of systems that can do the jobs that 

sequential processors historically did not usually do well, such as complex control 

problems, stock market prediction, and image classification. These systems are closely 

based on what we know about neurological function. An average biological neuron 

contains dendrites that accept input signals that are then processed in the cell body which 

transmits a single signal on an axon to synapses. Similarly, the average artificial neuron is 
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a simple processing element that contains weighted input connections to a 

summation/threshold node, providing a single output. Figure 4 shows the similarities 

inherent in this relationship.    

 

  
Figure 4. Biological vs. Artificial Neurons 

 

An ANN is therefore an interconnected group of artificial neurons arranged in 

some type of architecture.  A common architecture and the one used for this project is the 

Feed-Forward MLP, shown in Figure 3. 

ANNs did not begin to thrive until the development of the backpropagation 

algorithm in the early 1980s, which seems to have happened simultaneously by different 

researchers [5].  This development was crucial because it allowed effective training of a 

neural network of increased complexity.  This development, along with the availability of 

relatively cheap and powerful computers allowed the influence of neural networks to rise, 

gaining the prominence of neural networks seen today in everything from spam filters to 

speech recognition. 

2. Multi-Layer Perceptron Networks 

a. Basics of Multi-Layer Perceptron Design 
While there are a number of different ANN architectures available, the 

Multi-Layer Perceptron (MLP) architecture was chosen for two primary reasons.  First, 
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the MLP network is among the most popular applied networks available, and therefore is 

represented well in the available literature.  Second, the MLP network is capable of 

handling a large number of inputs without extreme interference from the curse of 

dimensionality [7].  What this essentially means is that a MLP network scheme is better 

suited for handling large amounts of potentially redundant inputs without adding 

increased hidden layer requirements.  This particular project required the ability to handle 

potentially large amounts of input since the assumed input was 1024 pixels in a 32x32 

bitmap.  A more detailed discussion of the particular problem of dimensionality is 

addressed in [7].  Finally, the output of these networks can allow for ‘uncertainty’ if the 

network is trained with “One-of-C” outputs.  This assigns an active state to one of C 

different outputs only in the case of a correct classification.  Thus, because only one 

output should signal due to a certain class of output, the presence of more than one signal 

can imply uncertainty of the network in classification. Human operators are therefore 

alerted to examine the image themselves and help protect against false classification. 

The design of a MLP ANN incorporates a version of the artificial neuron 

shown in Figure 4.  Inputs to the artificial neuron, or ‘node’, are typically multiplied by a 

weight specific to that input for that particular neuron.  The weighted inputs are then 

summed together and the result applied to a transfer function.  The transfer function can 

theoretically be of any type, from step functions to sinusoids. Experience with ANN use, 

along with the development of the backpropagation algorithm, tend to limit the useful 

transfer functions for a MLP into a few particular types.  This is due to the desire to have 

outputs of a specific range in addition to having a transfer function that is differentiable.  

A differentiable transfer function is an essential component of the backpropagation 

algorithm.  Transfer functions whose derivative function output is easily calculated 

without large amounts of arithmetic steps are valuable, as this capability aids in quicker 

calculation during backpropagation training.   Some commonly used transfer functions 

are the linear, sigmoid, and hyperbolic tangent, shown in Figure 5. 
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Figure 5. Common Transfer Functions 

 
b. Backpropagation in Detail 
Consider backpropagation. It is important to note that the standard 

backpropagation algorithm is a simplification of the Least Mean Square (LMS) algorithm 

developed by Bernard Widrow and Marcian Hoff for single-layer networks in 1960 [8].  

The LMS algorithm represented a change in focus from selecting weights to achieve 

particular network outputs via the perceptron learning rule to incremental shifting the 

weights based on minimization of mean-squared error between desired and observed 

output.  This is fundamental in that it shifts the decision boundaries in the network away 

from the training set output areas, therefore allowing greater generalization of the 

network and less susceptibility to noise [8].  The algorithms proved valuable for signal 

processing, but because they were designed for a single-layer network a generalization 

was required to adapt the algorithm for multi-layer network training [8]. 

Backpropagation uses a variant of the LMS algorithm called steepest 

descent. While the details of the derivation of these variants can be found in available 

resources like [4], there are a couple of important details to discuss.  Steepest descent 

seeks to alter weights so that the output moves in the direction of the gradient of the error 

function.  The learning rate ά determines how far in that direction steepest descent will 

move in one training iteration.  The primary result of this is that unless ά is within a 

correct range, steepest descent will probably not minimize the error to a global minimum.  

If ά is too small, then a global or local minimum may not even be found.  If ά is too large, 
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the algorithm is unstable and will not converge at all.  Two simplified contour maps that 

illustrate this concept are shown in Figure 6:   

 

 
Figure 6. Learning Rate Effects with (a) smaller and (b) larger than desired rate 

 

The above figure demonstrates an imaginary error function contour map, 

with the global maximum at the grey shaded circle, global minimum at ‘1’, and local 

minimum at ‘2’.  We see that when the learning rate is too small steepest 

descent/backpropagation tends to descend into a local minimum. A lower learning rate 

shortens the ‘jumps’ taken with every iteration, which increases the time it takes to train 

the network to achieve a minimum.  In relatively ‘flat’ areas of the error surface, a low 

learning rate can stall without finding a minimum at all, due to the reliance on the 

gradient. When the learning rate is too large, the algorithm may never settle close enough 

to the global minimum to provide effective results, oscillating around the minimum but 

not reaching it. 

The first step in backpropagation training is to propagate a set of inputs 

corresponding to a known output through a network beginning with random or pre-

selected weights. The outputs obtained are then compared to those that are desired to 

obtain the error, that is then fed backwards through the differentiated transfer functions 

multiplied by a learning rate, as well as each connection weight to determine individual 

sensitivities for each node at each layer.  These sensitivities are then used to update the 
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weights in an attempt to shift the output error to a global minimum.  Each iteration of 

backpropagation training is referred to as an epoch.  For a set number of epochs, different 

weight initializations can result in different RMS error at the output, depending on 

whether the backpropagation algorithm converged, encountered a local minima, or 

managed to reach the global minima.  Exactly what constitutes an ‘acceptable’ RMS 

value depends on the consumer of the output. Increasing the number of training epochs 

can reduce the RMS error on trained values, with the additional increased probability of 

overfitting the network to the training data.  What this means is that when the network is 

exposed to actual input after training, minor aberrations in the input from noise or other 

sources can result in very different output than expected, because generalization of the 

network was lowered by the increased amount of training to a specific type.  The 

aforementioned information regarding ANNs is discussed with greater detail in [5], [6], 

and [7]. 

 

B. IMAGE CLASSIFICATION 

1. Current Research 
Image classification covers a wide range of applications currently used in 

business and government.  For example, a demand exists for tumor detection in X-Ray 

and Magnetic Resonance Imaging (MRI) images, usually performed by doctors visually 

scanning images themselves.  The demand for automatic classification in this example is 

for use as a pointer, aiding doctors to see potential trouble areas they might have 

otherwise missed due to the difficulty in visually searching tissue scans for cancerous 

growth [9].   Another example of an application for automatic image and pattern 

identification is in the field of biometrics, specifically fingerprint identification.  In this 

field, automatic identification methods are used to save time, especially for the purpose 

of fingerprint matching in homeland security and police applications [10].  Detections of 

targets of interest in satellite imagery are yet another example where an automatic image 

classifier would help government and military users to make the best use of their 

available data.   
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2. An Application for Detection of LPI Emitters 
The LPI Emitter detection method used in [1] requires some form of classification 

in order to make use of the output of the QMFB.  As discussed by Professor Phillip E. 

Pace in Detecting and Classifying Low Probability of Intercept Radar: 

The presentation of the QMFB results to a trained operator will allow the 
signal parameters to be extracted, and can enable good classification 
results when the information from several layers is combined. [11] 

Thus the classifications of QMFB results provide the most information when a 

trained human and time to extract information is present. As shown in Figure 7, the 

QMFB method can produce a contour image frequency-time plot: 

 

 
Figure 7. QMFB Contour Frequency-Time Image (From [1]) 

 

 

Professor Pace, however, predicts the future arrival of Anti-Ship Cruise Missiles 

(ASCMs) equipped with LPI seeker heads [12].  This development would dramatically 

reduce the time available for trained operators to extract information.  This suggests a 

requirement for automatic classification of the QMFB output to reduce the time required 

to extract actionable information.   
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III. IMAGE AND NETWORK WEIGHT GENERATION 

A. IMAGE GENERATION 

1. Image Source 
Since the goal of this project is to develop an ANN capable of correctly 

classifying images that were extracted from a QMFB and run through a preprocessing 

step, it was essential to obtain images with which to train the network.  This work was 

conducted simultaneously as the work on the data input, QMFB, and preprocessing steps. 

Thus, there was no immediate way to obtain actual preprocessed QMFB products from 

sample waveforms via the SRC hardware during the design timeframe of this project.  

While MATLAB code could be used to obtain values, one of the key benefits of a ANN 

is that it can be retrained on new data.  With that in mind, the decision was made to 

generate 32x32 pixel images based on sample preprocessed QMFB outputs displayed in 

[1], using file formats directly compatible with the SRC-6 computer.   

The program used to generate the images was the open-source Linux tool 

‘bitmap’ written by Davor Matic, MIT X Consortium [13] and contained in the standard 

Red Hat Linux distributions.  ‘Bitmap’ provides a simple interface that allows the user to 

expressly set grid widths and lengths and therefore was useful in producing an accurate 

canvas with which to create sample training images.  The added benefit of using ‘bitmap’ 

was the use of the ‘bmtoa’ tool, also written by Davor Matic and included in the 

distribution that directly allowed conversion of ‘bitmap’-created images into American 

Standard Code for Information Interchange (ASCII) files with characters that represent 

pixel color.  With these two tools available free of charge and readily accessible on the 

computer, it was simple to design bitmap data files visually on a canvas and then convert 

the files to represent the planned output format from the preprocessing code. 

2. Selection of Training Images 
In order to provide for ‘uncertainty’ in the output as previously discussed in 

Chapter II, Section 2a, five outputs were selected for the neural network architecture with 

a “One-of-C” setup.  Therefore there would be 5 categories that could be trained for 

selection by the network.  In order to train the network to recognize ‘no signal’ as a valid 

category, only four actual patterns were generated.  These were the P4, T4, T3, and T2 as 
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discussed in [1]. Representations of these signals were created using ‘Bitmap’ in order to 

test network training and response. These are shown in Appendix A.  It is important to 

restate that superficial differences between the images generated for testing and actual 

output from the QMFB and threshold programs is irrelevant at this stage of research.  The 

neural network is set up to accept new weights as a programmed-in requirement.  The 

concept is that the actual images for certain patterns will be used to train these new 

weights in future applications. 

 

B. WEIGHT TRAINING SEQUENTIAL-PROCESSOR NETWORK 

1. Background 
One of the strengths inherent in an ANN is the capacity for ‘learning’.  During 

supervised training of a MLP ANN, training inputs are paired with desired outputs and 

backpropagation, or some other training algorithm is used to adjust the connection 

weights until the network performs reliably.  Thus, weight adjustment is a critical 

component of how the network will perform after training. 

While the SRC has macros designed to handle floating point, a significant time 

savings can be realized by conducting all mathematical operations in fixed-point integer.  

In addition, floating point operations, if instantiated on the MAP®, can result in costly 

space allocation.  For example, if we were to use the standard sigmoid presented earlier: 

1( )
1 xsig x

e−=
+

, we see that there are three floating point operations that must be 

conducted on the MAP®.  These are the exponential function, addition, and the division.  

The problem arises when we consider the amount of space required on the XC2V6000 

FPGA for these operations.  A single 64-bit floating-point divide occupies approximately 

1/8 the entire FPGA logic.  The exponential function occupies 3-8% of the FPGA space.  

This would place a severe constraint on each node in the network in just the sigmoid 

transfer function instantiation itself, let alone storage or connection weighting.  While a 

single sigmoid function could be pipelined for use by every node, this would cost clocks 

and degrade from the objective of trying to make the classification run as close to real 

time as possible.  An alternate solution is to create a LUT representation of the sigmoid 

function in fixed-point, providing the quantization error incurred is acceptable.  While 
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this is the method eventually used in the network, it, and fixed-point calculation in 

general, presented a problem for effectively training the network.  It is important to note 

here that research at NPS is being conducted by LCDR Tom Mack and Professor Jon T. 

Butler in creating high-precision function generators in the SRC-6 reconfigurable 

environment [14]. This methodology is discussed in more detail in [15].  Thus, the 

potential exists to further refine this network using the tools currently in development, 

because the sigmoid is one of the functions researched in this work. 

Chapter II discussed the ramifications of ineffective learning rates on the network.  

Whenever fixed-point integers are used in place of floating-point, quantization error 

occurs.  For example, if two bits of decimal point are used in fixed-point, the maximum 

quantization error is ±.125, because the two bits can only represent increments of .25:  0, 

.25, .50, .75.  While more decimal bits can be used to gain greater precision, floating 

point notation is designed to handle precision.  Training a network is inherently 

susceptible to errors in precision, because without a precise enough application of the 

learning rate the system may never converge to a minimum.  In addition, errors in 

precision limit the effective calculations during each iteration, potentially increasing the 

amount of epochs required by a significant amount.  For execution of a well-trained 

network, however, precision is less significant.  In a network with average levels of 

generalization, quantization error will be treated as noise by the network and the network 

will produce the correct results.  This presented a dilemma of whether to use a fixed-point 

system for a quickly-executing network with potential training problems, or use a 

floating-point system for a slower-executing network that may not fit on the MAP® but is 

able to train effectively.  The solution to this dilemma was to incorporate the best aspects 

of both systems, and avoid the problems by separating the training network from the 

execution network. 

2. Sequential Weight-Generation Program Design 

A Feed-Forward MLP ANN is unique in that once the weights are set to 

acceptable execution levels by an effective training session backpropagation is no longer 

required.  With this concept in mind the decision was made to separate the RANN 

training from the network envisioned to actually classify the data obtained from QMFB 
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preprocessing.  This approach was based in part on inspiration derived from a graduate 

project by Steffan Nissen regarding a Fast ANN design [16].    

The sacrifice made by this decision is the loss of real-time training of the network, 

because new desired image-output pairs would be required to run first in a C++ model of 

the execution network in order to allow for weight generation.  Since the alternative was 

a network that potentially was unable to converge to minimum error or operate slower 

than conventional sequential-processor neural networks, this sacrifice was determined as 

acceptable. 

To construct the weight-generation program, some public-domain neural network 

source code written by Dr. Phil Brierly was used as a base [17]. The original code is 

included in Appendix B, while the code specifically used for weight generation is 

included in Appendix C.  The weight-generation code includes the training and testing 

bitmap arrays defined within the actual source, as ‘trainInputs’ and ‘testInputs’ 

respectively, for the sake of reproducibility and traceability.  It is inferred that these 

arrays will actually be populated from data extracted from the preprocessing step on the 

SRC and thus a minor modification to the code will be required. Likewise, the selection 

of number of epochs and learning rate may have to be adjusted when new data is 

presented to the network to match desired RMS error and training time.  A sample output 

from this program is included in Appendix D.  The sample output has been truncated in 

several areas for the sake of brevity, because the weights are randomly initialized each 

time the weight-generation network runs.  Therefore,  the output will be unique each time 

and thus not reproducible.  The purpose of Appendix D is to show an example of the data 

available after every run.  One important item of note is the time required for training, 

that in the particular case of the run shown in Appendix D was 8.57 seconds for 1000 

epochs.  This large delay requirement is a major reason why the network training was 

shifted off-MAP®.  With such a large delay, real-time computation on the SRC is 

impossible. 

3. Program Operation 

The first step in the program is the initialization of the weights with random 

numbers via the function call ‘initWeights()’.  The desired training outputs are then 

initialized via the ‘initData()’ function call. This is the function call that should contain 
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training image file accesses for loading the ‘trainInputs’ array in future designs of the 

weight training program. The program is designed to conduct all training of weights 

specifically to the ‘trainInputs’ array.  Next, the program enters into the epoch loop for 

training.  During each epoch, the program selects patterns at random and propagates them 

through the network via the ‘calcNet()’ function call.  The output array, ‘outPred’ is then 

compared to the desired output array ‘trainOutput’ to obtain the error array for that 

particular pattern, ‘errThisPat’.  This error is first backpropagated through the 

‘WeightChangesHO’ function call to adjust the hidden-to-output layer connection 

weights, then backpropagated through the ‘WeightChangesIH’ function call to adjust the 

input-to-hidden layer connection weights. Once a number of patterns equal to the array 

size have been randomly selected, propagated and backpropagated, the program calls 

‘calcOverallError’ to calculate the overall RMS error for that epoch.  An if-then 

statement is used after the ‘calcOverallError’ function call to determine whether to print 

the RMS error or not. This statement is user-adjustable by merely changing the modulus 

division divisor, currently set to print error every ten epochs.  Note that all steps in this 

weight training process involve floating-point variables to maximize the precision of 

training.  In addition, instead of using a for-loop linked to the number of desired epochs 

for training, a while loop can be substituted and linked to the overall RMS error.  The 

training section of the program has clock reads before and after in order to provide timing 

data specific to the training process itself. 

The program then converts the floating point weights to 3-decimal point integers 

using the function call ‘Integerize’, that simply multiplies the floating point values by 

eight and casts them as integers, discarding the remainder.  This methodology incurs a 

maximum quantization error of .075 and if higher weight precision is later desired, this 

portion can be modified to produce a multiplication of 2x in order to provide x integer 

decimal bits.  Care should be taken to ensure against overflow, however, as these 32-bit 

weights will later be added on the MAP® and steps have not been taken to limit overflow 

other than to limit the amount of decimal bits in the integer values.  In an effort to 

compare precision between the ‘integerized’ weights and pure-floating point operation, 

the integer weights are run through the network with the ‘intcalcNet’ call and results 

displayed with the ‘calcIntError’ call.  As seen from the example in Appendix D, the 
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integer weights provide an overall RMS error of .25, while the thousandth epoch floating-

point RMS error was 0.112453. The increase in RMS error from integer weights may be 

acceptable depending on the application.  In this particular case which uses ‘One-of-C’ 

outputs, a classification is still visible in the output and thus was acceptable for these 

purposes.  The effect of integer weights on the output of the ANN will be discussed more 

thoroughly in Chapter V. 

The final section of the program prints the integer values in 64-bit hexadecimal 

format to a file called ‘weightout’.  This file is separate from the output contained in 

Appendix D, which nominally outputs to screen but can be redirected to a file in the 

execution call with the ‘>>’ Linux redirector command.  32-bit weights for the nodes are 

paired together in a single 64-bit value to maximize the use of communication bandwidth 

into the MAP® from the OBM.  Nodes zero and one for the input-to-hidden connection 

are paired together, followed by nodes zero and one weights for the hidden-to-output 

connection.  Nodes two and three are likewise paired and follow immediately after.  

Finally, both sets of node four weights are padded with 32 zeros and written to the file.  

This padding can be removed and replaced with additional node weights if more nodes 

are added to the network in later work.  Once trained, these weights are not envisioned to 

change, and thus the RANN can continuously run with the same weight file if optimal 

settings are determined and found.  
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IV. RECONFIGURABLE-ENVIRONMENT ARTIFICIAL 
NEURAL NETWORK (RANN) DESIGN AND OPERATION 

A. DESIGN OVERVIEW 

The design goals for the RANN code were speed of execution, reusability of 

code, and minimized use of MAP® resources.  While programming in the Carte™ 

environment aided the implementation of some processes, incorporation of VHDL code 

was also required to meet these design goals. Thus, several design decisions were made 

in the process of creating the ANN architecture.  These are discussed below. 

1. Network Input 
There are two required input sources for the RANN to enable execution.  The first 

is the weight-generation output file ‘weightout’ from the program discussed in detail in 

Chapter III.  The second is the image output from the QMFB-preprocessing steps.   

a. Connection Weights File 

While the RANN is currently designed to access this file in the same 

directory as the SRC executable, the main.c source can be altered if this setup proves 

unwieldy in the future.  It is essential for the current software, however, to have a trained-

weight file set up in the format described in Figure 8. 

 
Figure 8. File Design Architecture for ‘weightout’ Program 
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The purpose of stacking nodes side by side is to take advantage of the 

maximum bandwidth available to OBM memory reads.  Because one 64-bit long word 

can be read back from an OBM per clock, it makes sense to combine two 32-bit integers 

in the same read.  These integers are then easily extracted using the user-callable macro 

‘split_64to32’ on the MAP® processor as a matter of bit routing on the FPGA.  It is 

important to restate that these weight values are the 3-decimal bit integer values produced 

by casting a floating-point value to integer that has been multiplied by 8.  

Because the current architecture is designed with 5 hidden layer nodes and 

5 output layer nodes, the ‘weightout’ file is set up with the input-to-hidden layer 

connection weights for a particularly numbered node to be followed by the hidden-to-

output layer connection weights for the similarly-named node in the output.  This was 

merely a convention in placement, because the weights are placed in OBM banks by 

main.c, and can theoretically be placed in any order providing the reconfigurable-specific 

code is designed to obtain them correctly.  For example, the zero-padding area can be 

used for additional input-to-hidden layer connection weights if an additional hidden layer 

node is added, or filled with additional sets of hidden-to-output layer connection weights 

if multiple output nodes are added. The current iteration of the main.c program places the 

first ‘set’ of weights into OBM Bank B, the second in C, and the last in D, as shown in 

Figure 8.  This was required to limit the number of accesses to OBM in an effort to speed 

network execution.  The requirement for a larger number of network nodes can 

potentially increase clock speed, as OBM banks will incur multiple accesses.  A possible 

solution to this is discussed in the ‘Future Work’ section of Chapter VII.  

b. Preprocessed Image Input 
The preprocessed image input from the QMFB is the data that the network 

will classify.   As previously discussed, these files were self-generated due to 

inaccessibility to actual data at the time the network program was written, using the 

‘bitmap’ and ‘bmtoa’ tools.  The original ‘bmtoa’ output files were altered from a binary 

ASCII file to a 32-bit hex padded with 32 zero bits ASCII file to conform to the output 

format used by Ensign Brown and documented in [3].  This was accomplished with a 

simple conversion program contained in Appendix F.   
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The main.c file currently requires an argument consisting of the file name 

of the 64-bit hex ASCII image file.  At execution, the implicit executable main.c places 

this file’s data into OBM bank A.  The explicit executable is thus able to strip the zero 

padding off in the same manner as separating the two 32-bit integer weights for the 

connection weight data using ‘split_64to32’ and discarding the padding.  The image data 

is then available for propagation through the network. 

2. Input-to-Hidden Layer Processing 
The input-to-hidden layer processing consists of two distinct steps.  The first is 

the connection weighting and summation of the input image data for each hidden layer 

node.  The second step is the sigmoid transfer function processing, which is essential in 

introducing nonlinear response to the network. 

a. Hidden-Layer Connection Weighting and Summation 

A typical MLP ANN architecture, such as the weight-generation program, 

processes the input in a fairly standard manner.  Each input is usually multiplied by a 

connection weight specific to a particular node and then the weighted inputs for each 

node are summed together to produce an input to the transfer function.  Because the 

required input image was 32 bits in height and 32 bits in length, this would result in 1024 

multiplies and indeed the weight-generation program accomplishes hidden-layer 

processing in this manner.  The Carte™ environment, coupled with the fact that the input 

is binary, allows the multiplication and summation to take place in the same process, 

using an accumulator macro supplied by SRC. Because multiplication is irrelevant with a 

multiplicand of zero or one, the input image data is used as an enable for 5 separate 

accumulator macros. The output of each accumulator is designated for a particular hidden 

layer node.    A graphical representation of this setup is shown in Figure 9.  The use of 

this particular arrangement allowed complete weighting and summing for all five hidden 

layer nodes within 1067 clocks, primarily due to OBM memory data access timing for 

each input-to-hidden layer connection weight.  This execution time has the potential to be 

halved in future work in a methodology discussed in Chapter VII. 
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Figure 9. Hidden-Layer Weight Accumulator 

 
 

b. Sigmoid Transfer Function Processing 
The use of a sigmoid transfer function is an essential component of this 

ANN design.  First, the transfer function provides the capability for nonlinear response, 

increasing the capability of the network.  Second, the transfer function allows the hidden 

layer output to be bounded between zero and one, aiding the network in avoiding 

unintentional integer overflow.  A potential detriment of using this function, however, 

was the potential loss of speed in terms of producing the output.  Recall that the sigmoid 

function is  1( )
1 xsig x

e−=
+

.  Realization of this functions output via mathematical 

processing would be complex and potentially costly in time.  Thus, the decision was 

made to encapsulate this function via a VHDL macro that would act as a LUT. Because 

the sigmoid function is bounded between zero and one, a four decimal bit output is used 

as a compromise between greater precision and LUT size.  With weight values incurring 

quantization error from 3 decimal bits anyway, increasing the sigmoid function past four 

decimal bits was also considered to have questionable benefits.  The sigmoid function 

VHDL code, black box file, and info file are contained in Appendix G. The sigmoid 

function is referred to as “SIGFOUR” by the explicit program, and executes as a 

pipelined user macro with a latency of zero, significantly speeding the  
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process output.  The function is able to be called with a latency of zero, as it is 

encapsulated as a VHDL ‘process’, its operation triggered by the change of the input 

variable. 

3. Hidden-to-Output Layer Processing 
The hidden-to-output layer weights were used to populate a two-dimensional 

array called ‘wt2’ in the explicit code, thus instantiating the array in BRAM.  This array 

is populated with the hidden-to-output layer weights contained in OBM multiplied by the 

corresponding sigmoid function output for each hidden layer node.  Once the array is 

populated with data, accumulators are again used to sum the five inputs to each output 

node, thus producing five outputs in a “One-of-C” configuration.  This is shown in Figure 

10: 

 
Figure 10. Hidden-to-Output Layer Processing 

 

The figure shows the hidden-layer sigmoid output being individually 

multiplied with each particular row weight in the corresponding column.  After 

multiplication is complete, each new individual column value in a particular row is 

summed to provide the output for each node.  Thus, each output node receives an 

individually-weighted set of outputs from each of the hidden-layer nodes, maintaining the 

interconnectivity inherent to an ANN.  An array is chosen to enhance reusability of code. 

The array must be changed if the number of hidden layer nodes or output layer nodes 

changes.  For an array of weights, this involves changing the array values in the wt2 

declaration, instead of adding additional individual variables that represent each of the 
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array squares shown above in Figure 10.   Contained within the source code is a 

commented-out section that uses these individual variables instead of an array.  For a 

1024x5x5 network using individual variables, a savings of 69 MAP® clocks was realized.  

In the interest of reusability, the array is used but if future work uses the same 1024-5-5 

architecture, reversion to individual Hidden-to-Output weight variables may provide 

better performance, as it separates the data into different BRAM blocks that allow for 

simultaneous access. 

The final output from the RANN MAP® code is a 32-bit integer with 

seven decimal bits, resulting from the four decimal bit sigmoid outputs multiplied by the 

three decimal bit Hidden-to-Output layer connection weights.  Thus, the output can be 

used by itself or converted to floating-point and divided by 128 to produce the ‘actual’ 

output.  The current iteration converts to floating point on the sequential processor code 

in order to provide a base for comparison to the output of the pure floating-point network. 
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V. NETWORK PERFORMANCE COMPARISON 

A. PERFORMANCE COMPARISON METHODOLOGY 
To adequately estimate performance of the RANN, a specific methodology was 

devised in the interest of standardization to previous comparable work.  In this vein, the 

decision was made to compare speed of execution similar to how Ensign Brown 

compared speeds in [3], with the exception of omitting MATLAB performance.  The 

decision to omit MATLAB performance is due to the understanding that, as an 

interpreted language, the speed of execution was assumed to automatically be less than 

equivalent code in standard C++.   

For the purpose of comparison, the weight generation C++ program was used as a 

basis for the sequential-processor timing.  This was accomplished with the addition of a 

loop at the end that assigns a pattern number sequentially and then calls calcNet, the 

network floating-point propagation function.  The use of the weight-generation program 

was due to the fact that essentially, the architecture is the same with the exception of the 

use of integers and features specific to the Carte™ programming environment. Thus, an 

accurate comparison can be made between a floating-point sequential neural network and 

the RANN. 

Ten thousand floating-point propagation trials were run, which amount to two 

thousand of each of the five standard inputs sequentially. The timing before and after 

were made in a manner similar to that used by Ensign Brown in [3], in an effort to 

standardize the results observed from SRC conversions.  The result from the sequential-

processor network was 1.02 seconds for ten thousand runs, which equates to 102 µs per 

network execution. These results can be observed in the last line of Appendix D, the 

weight generation code output     

Conversely, the reconfigurable code runs at a standard 1149 clocks per iteration, 

which equates to 11.49 µs per network calculation given the 100 MHz clocking speed of 

the MAP®.  In terms of speed of processing, execution of this RANN format takes 

11.26% as much time to execute as the same network running on a sequential processor.   
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Please note that for different images of the same size these numbers would remain the 

same, because the amount of weights are fixed and thus the propagation merely becomes 

an issue of math processing timing. 

 

Execution Hardware Time (µs) 
Sequential Processor 102.00 
Reconfigurable MAP® 11.49 

 
Table 1.   Network Execution Times 

 

From the data, the RANN outperformed the existing architecture by 

approximately a factor of ten on the basis of speed of processing.  This is somewhat 

mitigated by the potential increase of RMS error incurred via the use of fixed-point 

variables on the reconfigurable hardware, but the comparisons of actual network output 

for the P4 image visually by bar graph in Figure 11 show that in both cases, the 

classification can be clearly discerned regardless of RMS error. All test images show 

comparable results and are available in Appendix H.  The actual values of overall RMS 

error on each image for both types of network are shown in Table 2. 

P4 Image Network Responses
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Figure 11. P4 Image Network Output Comparison 
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P4 T4 T3 T2 NoInput
0.0826122 0.1077632 0.0229733 0.1071012 0.052627
0.147902 0.125 0.0790569 0.1936492 0.11848

Sequential FP Proc.
Reconfigurable MAP®

RMS Error Values for Images

 
Table 2.   RMS Error Value Comparison 

 

B. SRC-SPECIFIC PERFORMANCE 

The RANN code was designed with a goal of minimizing the demand on the 

MAP® hardware.  The reason for this is that this project was envisioned to run as a 

parallel section simultaneously with the data input program created by Captain Stoffel 

[2], along with the preprocessing program created by Ensign Brown [3].  Because 

estimated hardware demands were initially envisioned by all three researchers as large, a 

necessary design goal that materialized was the minimization of those hardware demands 

so that each of the three sections could run simultaneously without impacting the 

operation of the others. 

One of the products of compilation in the Carte™ environment is the creation of a 

log that summarizes the exact hardware demands that the program will incur.  For the 

RANN, this summary provided the following data: 

Logic Utilization: 

  Number of Slice Flip Flops:       8,858 out of  67,584   13% 

  Number of 4 input LUTs:           5,710 out of  67,584    8% 

Logic Distribution: 

  Number of occupied Slices:        6,689 out of  33,792   19% 

The use of 19 percent of the slices available on particular MAP® was acceptable, 

as it left a full four-fifths of the slice untouched for parallel code instantiation.  While the 

demand on OBM is large for this particular program, OBM usage for Ensign Brown’s 

code is merely as a means of input and output, which can and is intended for substitution 

with data streams from Captain Stoffel’s code to the RANN [3].  The use of OBM by 

Captain Stoffel’s code as an intermediary storage mechanism for data extraction [2] and 

can potentially be replaced with streams as well. 
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C. SUMMARY 

The increased speed gain of the RANN is directly attributable to several factors.  

First, the use of fixed-point math within the MAP® greatly simplifies the hardware. This 

not only decreases logic demands on the FPGA but also decreases the time required to 

obtain output.  Second, the use of LUT approximations of the sigmoid transfer function 

eliminate large calculation demands and instead replace them with what is essentially an 

on-chip memory access.  A four-bit decimal approximation allows this table to be 

manageable, without incurring exorbitant RMS error in output calculation.  The only cost 

of the VHDL sigmoid approximation approach is the requirement for the initial user to 

construct and link the initial source code, along with the increased place-and-routing time 

incurred when the explicit and implicit code is compiled on the SRC with the ‘make hw’ 

command.  As an effective VHDL source code was created and linked for this work, that 

particular requirement is mitigated.  This program is also envisioned to be compiled once 

and only recompiled once a new weight set is generated, thus mitigating the longer 

compile-time.  Finally, the MAP® hardware allows the simultaneous execution of several 

processes.  For example, each of the five hidden layer nodes conduct an accumulate 

operation, enabled by the input image, once per clock.  This same operation on a 

sequential processor must be done separately at each node, in sequence.  These three core 

factors enabled the approximately tenfold speed performance observed with the RANN, 

and suggestions are made in Chapter VII as to how to increase these gains even more.  A 

set of simplified instructions in the use of the RANN is included in Appendix I. 
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VI. EXCLUSIVE-OR (XOR) IMAGE COMPARITOR 

A. RECONFIGURABLE PROGRAM DESIGN 
A distinctly different method of image classification is a brute-force method of 

direct bit-to-bit comparison.  For sequential processors, this method lacks elegance as 

there may be numerous images to compare against in selecting the correct match. The 

SRC Carte™ programming environment, lends itself to easily accomplishing this method 

in parallel, achieving significant clock savings.  In this method, the bits in the input image 

are XORed with the corresponding bits of the stored image.  A 1 in the resulting image 

corresponds to a difference between the input and the stored images.  The “popcount_64” 

pure functional macro provided by SRC allows the single-clock counting of 1 bits in an 

input, providing an integer sum of this count as an output.  This macro applied to the 

output of an XOR comparison provides an index of difference for each output.  This 

concept is pictured below in Figure 12, where the sum of differences in this example 

would equal ‘2’ from the two dark pixels which represent ones. 

 

    
Figure 12. ‘XOR-Mask’ Comparator 

 

To achieve the best possible speed in the Carte™ environment, the comparison 

images should each be stored as a 16-deep, 64-bit BRAM array instead of OBM memory.  

This configuration should allow simultaneous access per clock for each image with an 

incoming 64-bit preprocessed input, providing the input has been optimized by 

eliminating unnecessary bit padding, a recommendation that is discussed in detail in the 
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future work section.  Declaring a constant BRAM array initialized with individual values, 

however, is a function recently introduced into the Carte™ 2.2 programming 

environment.  During the course of program production, only the 2.1 programming 

environment was installed and therefore constant BRAM arrays were not used in this 

program.  

In place of constant BRAM arrays, individual BRAM variables were used as 

shown in the source code, contained in Appendix J.  The downside of not using arrays is 

the inability to loop the comparisons, as each individual variable must be called 

separately.  This has resulted in particularly long code for a simple procedure.    

The inherent advantage to the XOR comparison method is speed of execution, as 

potentially large numbers of images can be simultaneously compared and a result found 

in fewer clocks than that which is required by the RANN architecture.  The disadvantage 

in the XOR comparison method involves demands on the MAP® hardware. Training a 

neural network with more images does not necessarily increase the amount of hidden 

layer weights, as it may only require more training epochs and the weights will be 

adjusted differently. The only reason more hardware demands will be made by the 

RANN architecture is if output response suffers and to compensate, a decision is made to 

increase hidden layer nodes, and thus input-to-hidden layer connection weights. 

Increasing the number of images for an XOR comparator will automatically require more 

BRAM, distributed Select RAM, or OBM memory to hold the comparison images and 

thus automatically places a larger burden on the hardware.  It is important to note that 

only 5 comparison images were stored for this particular execution of the program 

 

B. RECONFIGURABLE PROGRAM EXECUTION 

1. Hardware Demands 

The compilation log file for the XOR comparator shows an increased burden on 

the hardware, particularly in LUT usage: 

Logic Utilization: 

  Number of Slice Flip Flops:      15,240 out of  67,584   22% 

  Number of 4 input LUTs:          10,337 out of  67,584   15% 
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Logic Distribution: 

  Number of occupied Slices:        9,151 out of  33,792   27% 

This increase can be attributed the relatively larger amount of calculations taking 

place on the hardware compared to the RANN.  There exist several ways to decrease this 

burden that are discussed in the future work section of Chapter VII. 

2. Performance Gains: 

The reconfigurable XOR comparator output for each of the five types of input 

images is provided in Appendix K.  A sample output is provided below: 

>./ex07 p4input64 
 
65 clocks 
Difference Output= Pattern 1(0) 
Difference Output= Pattern 2(159) 
Difference Output= Pattern 3(165) 
Difference Output= Pattern 4(180) 
Difference Output= Pattern 5(97) 
Closest Match is Pattern 1 
Which is: P4 Image 

As shown above, this classification executes completely in 65 clocks, resulting in 

650 nanoseconds per execution.  This is significantly faster than the 1149 clocks required 

for RANN execution, and provides comparable output. 

 

C. SEQUENTIAL COMPARISON PROGRAM 
A standard C++ program was developed as a basis for comparison for the XOR 

comparator.  The source code for this program is contained within Appendix L.  The code 

for this program was written to achieve similar output to the reconfigurable comparator, 

as seen in the sample below:   

>./xorcomp t4input 

Time to complete 10000 trials (in seconds): 1.780t 
Number of Different bits for P4 Image -->(160) 
Number of Different bits for T4 Image -->(0) 
Number of Different bits for T3 Image -->(224) 
Number of Different bits for T2 Image -->(160) 
Number of Different bits for No Image -->(160) 
Since the lowest delta is 0, this image most closely resembles: 
T4 Image 
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This program conducts 10,000 trials in 1.78 seconds, resulting in a timing of 

approximately 176 µs per run.  This execution speed is actually 74 µs slower in execution 

than the ANN, potentially due to the time required to extract results from the XOR 

comparison.  This program also uses a 32-bit image line width that increases the number 

of comparisons from 16 to 32. In this case, without the popcount_64 macro, the ones 

were extracted via modulus 2 executions followed by bit shifting by 1. This ones 

extraction method was thought to trivialize any gains obtained from using a 64-bit width 

image file, because the amount of iterations required to extract the ones would be the 

same. There seems to be a problem in the ones extraction as well. Although the program 

always selects the correct match, the ones values obtained from the sequential program 

for other images are not correct. While further refinement of the program could be 

conducted to reduce execution time, and ensure correct extraction, the point is that an 

architecture that excels in a reconfigurable environment does not necessarily do so in a 

sequential one.   
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VII. CONCLUSION 

A. SUMMARY OF WORK 
This thesis describes a proposed design for an ANN on the SRC-6 reconfigurable 

computer.  Advantages inherent in this design are a tenfold speed increase, with limited 

and possibly insignificant increase in output error.  There are several neural network 

architecture changes that enable these advantages.  The first is separation of the weight 

training from network execution.  The second is using LUT representations of the 

nonlinear sigmoid transfer function.  The third is execution of the neural network in 

reconfigurable hardware to take advantage of parallel processing. 

While ASIC components can and have been used to create neural networks, the 

potential speed increases are mitigated by the loss of flexibility.  The RANN architecture 

lends itself to reusability and modification.  In the case where an increase in the number 

of hidden layer nodes is required, the programs can be altered whereas a new ASIC 

would have to be commissioned.  Therein lies the strength of the reconfigurable 

architecture, which is flexibility in response to changing demands.  Increases that develop 

in the speed of FPGA clocking and the ability to conduct floating-point operations will 

only add to the strengths inherent in the reconfigurable computing domain. 

The role of the RANN program as part of a comprehensive LPI detection system 

has been described. A discussion of LPI systems development and the requirement for 

detection capability is provided to show potential for practical value of the RANN in 

future military applications.  The history and development of neural networks is given to 

provide background information for those unfamiliar with the technology.  The science 

behind ANNs is provided to assist in understanding some of the difficult design decisions 

made in creating a network capable of being run in the SRC-6 reconfigurable 

environment.  These design decisions have been discussed at length to provide 

understanding of the developed code, all of which is capable of being run in an open-

source environment.  Finally, performance data is provided that supports the conclusion  
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that neural networks can be run in a reconfigurable environment with substantial speed 

increases and comparable performance levels.    

 

B. SUGGESTED FUTURE WORK 
This thesis provides a number of different avenues for future work in the realm of 

signal processing, reconfigurable computing, and ANNs.  These suggestions allow for the 

continuation of research in these areas. 

1. Comprehensive Analysis of the SRC LPI Detection System 

To date, the work conducted with regards to implementing the LPI Detection 

methodology outlined by Professor Phillip E. Pace in [1] has been separately conducted.  

Data input hardware and programming has been created by Captain Kevin Stoffel [2], 

preprocessing programming created by Ensign Dane Brown [3], and image classification 

programming via ANN is detailed in this work.  The next step in creating and evaluating 

the complete system is joining all three programs to run jointly and in parallel.  This was 

envisioned to be accomplished by having each program run in a parallel section, as 

described in section 5.9 of the SRC C Programming Environment v2.1 Guide [18].  Data 

would be transferred between sections with the use of streams, eliminating much of the 

use of OBM Memory Banks.  Specific to this project, the use of OBM Bank A could be 

discarded and streams from the preprocessing step stored in BRAM for ease of access.  

OBM banks B, C, and D are still envisioned to be used to store weight values, because 

storing in BRAM may be precluded by the use of Multiplication blocks in Captain 

Stoffel’s code [2].  A potential solution is the use of separate MAP® devices for the data 

input and preprocessing/classification codes, using the GPIO bandwidth to stream data. 

The comprehensive analysis can also provide standardization of the bitmap image 

size based on constraints found in [2].  Because the input-to-hidden connection weighting 

drives the timing on the RANN, with 1024 accumulations costing approximately 1067 

clocks, reduction in bitmap size may significantly increase network speed, at a potential 

cost in classification performance.  Comprehensive analysis can also provide actual 

preprocessing images from simulated signals, that should result in a network that is 

trained to operate closer to real world data.  As previously discussed, this implementation 

of RANN is trained on images approximated from waveforms contained in [1]. While 
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speed performance would not be expected to change, output performance would increase 

from  the  use  of  actual  signal  input  in training. 

2. Program Optimization 

Another potential avenue for network performance becomes available in the case 

where all six banks of OBM are available for use by the RANN.  The additional banks of 

memory can be used at maximum bandwidth by striping input-to-hidden weight values 

among the six banks, allowing more than 1 weight read per clock per hidden-layer node.  

This can potentially halve processing time of the network as a whole, because input-to-

hidden layer weighting and summation currently is the largest boundary value in terms of 

processing time. 

Another avenue for optimization involves the current output of Ensign Brown’s 

code.  Instead of using 32 64-bit words that are padded with 32 unnecessary bits the 32-

bit outputs should be stacked, resulting in 16 64-bit outputs.  These improved outputs 

maximize the use of streaming data bandwidth between parallel sections, and can easily 

be broken down into their constituent components with the ‘split_64to32’ macro.  The 

reconfigurable XOR comparator was designed with this optimization in mind. 

The large hardware requirements of the reconfigurable XOR comparator can be 

mitigated by a few optimizations.  First, the planned upgrade of the NPS SRC-6 Carte™ 

programming environment to 2.2 will allow the use of constant BRAM arrays.  Declaring 

a BRAM array with values already instantiated saves time since otherwise an array would 

have to be populated by OBM or streams from other parallel sections.  Populating a 

BRAM array in this manner incurs a penalty as these values must be read from OBM or 

the stream.  Arrays are valuable since loop variables can be used as indexes into the 

array, allowing looped reads from the array when several repetitious calculations are 

required.  A replacement for using these arrays in this manner is declaring individual 

variables initialized with the desired values.  Individual variables require loop unrolling, 

as there is no array to index using a loop counter. If the desired number of comparison 

images increases significantly, OBM storage of images is a potential alternative.   While 

OBM use may sacrifice performance by limiting the number of data accesses per clock, 

the XOR-comparison methodology may still outperform the RANN. 
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APPENDIX A.  IMAGES CREATED FOR NETWORK TESTING  

      

  P4 Image     T4 Image 

 

     

  T3 Image     T2 Image 
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APPENDIX B.  PUBLIC DOMAIN NEURAL NETWORK CODE 

//////////////////////////////////////////////////////////////////////////// 
//MLP neural network in C++ 
//Original source code by Dr Phil Brierley 
//www.philbrierley.com 
//Translated to C++ - dspink Sep 2005 
//This code may be freely used and modified at will 
//C++ Compiled using Bloodshed Dev-C++ free compiler http://www.bloodshed.net/ 
//C Compiled using Pelles C free windows compiler http://smorgasbordet.com/ 
//////////////////////////////////////////////////////////////////////////// 
 
//#include <iostream.h> 
#include <stdlib.h> 
#include <stdio.h> 
#include <time.h> 
#include <math.h> 
 
 
//// Data dependent settings //// 
#define numInputs  3 
#define numPatterns  4 
 
 
//// User defineable settings //// 
#define numHidden 4 
const int numEpochs = 500; 
const double LR_IH = 0.7; 
const double LR_HO = 0.07; 
 
 
//// functions //// 
void initWeights(); 
void initData(); 
void calcNet(); 
void WeightChangesHO(); 
void WeightChangesIH(); 
void calcOverallError(); 
void displayResults(); 
double getRand(); 
 
 
//// variables //// 
int patNum = 0; 
double errThisPat = 0.0; 
double outPred = 0.0; 
double RMSerror = 0.0; 
 
// the outputs of the hidden neurons 
double hiddenVal[numHidden]; 
 
// the weights 
double weightsIH[numInputs][numHidden]; 
double weightsHO[numHidden]; 
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// the data 
int trainInputs[numPatterns][numInputs]; 
int trainOutput[numPatterns]; 
 
 
//============================================================== 
//************** function definitions ************************** 
//============================================================== 
 
 
//*********************************** 
// calculates the network output 
void calcNet(void) 
{ 
    //calculate the outputs of the hidden neurons 
    //the hidden neurons are tanh 
    int i = 0; 
    for(i = 0;i<numHidden;i++) 
    { 
   hiddenVal[i] = 0.0; 
 
        for(int j = 0;j<numInputs;j++) 
        { 
    hiddenVal[i] = hiddenVal[i] + (trainInputs[patNum][j] * weightsIH[j][i]); 
        } 
 
        hiddenVal[i] = tanh(hiddenVal[i]); 
    } 
 
   //calculate the output of the network 
   //the output neuron is linear 
   outPred = 0.0; 
 
   for(i = 0;i<numHidden;i++) 
   { 
    outPred = outPred + hiddenVal[i] * weightsHO[i]; 
   } 
    //calculate the error 
    errThisPat = outPred - trainOutput[patNum]; 
 
} 
 
 
//************************************ 
//adjust the weights hidden-output 
void WeightChangesHO(void) 
{ 
   for(int k = 0;k<numHidden;k++) 
   { 
    double weightChange = LR_HO * errThisPat * hiddenVal[k]; 
    weightsHO[k] = weightsHO[k] - weightChange; 
 
    //regularisation on the output weights 
    if (weightsHO[k] < -5) 
    { 
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     weightsHO[k] = -5; 
    } 
    else if (weightsHO[k] > 5) 
    { 
     weightsHO[k] = 5; 
    } 
   } 
 
 } 
 
 
//************************************ 
// adjust the weights input-hidden 
void WeightChangesIH(void) 
{ 
 
  for(int i = 0;i<numHidden;i++) 
  { 
   for(int k = 0;k<numInputs;k++) 
   { 
    double x = 1 - (hiddenVal[i] * hiddenVal[i]); 
    x = x * weightsHO[i] * errThisPat * LR_IH; 
    x = x * trainInputs[patNum][k]; 
    double weightChange = x; 
    weightsIH[k][i] = weightsIH[k][i] - weightChange; 
   } 
  } 
 
} 
 
 
//************************************ 
// generates a random number 
double getRand(void) 
{ 
 return ((double)rand())/(double)RAND_MAX; 
} 
 
 
 
//************************************ 
// set weights to random numbers  
void initWeights(void) 
{ 
 
 for(int j = 0;j<numHidden;j++) 
 { 
    weightsHO[j] = (getRand() - 0.5)/2; 
    for(int i = 0;i<numInputs;i++) 
    { 
     weightsIH[i][j] = (getRand() - 0.5)/5; 
     printf("Weight = %f\n", weightsIH[i][j]); 
    } 
  } 
 
} 



46 

 
 
//************************************ 
// read in the data 
void initData(void) 
{ 
    printf("initialising data\n"); 
 
    // the data here is the XOR data 
    // it has been rescaled to the range 
    // [-1][1] 
    // an extra input valued 1 is also added 
    // to act as the bias 
    // the output must lie in the range -1 to 1 
 
    trainInputs[0][0]  = 1; 
    trainInputs[0][1]  = -1; 
    trainInputs[0][2]  = 1;    //bias 
    trainOutput[0] = 1; 
 
    trainInputs[1][0]  = -1; 
    trainInputs[1][1]  = 1; 
    trainInputs[1][2]  = 1;       //bias 
    trainOutput[1] = 1; 
 
    trainInputs[2][0]  = 1; 
    trainInputs[2][1]  = 1; 
    trainInputs[2][2]  = 1;        //bias 
    trainOutput[2] = -1; 
 
    trainInputs[3][0]  = -1; 
    trainInputs[3][1]  = -1; 
    trainInputs[3][2]  = 1;     //bias 
    trainOutput[3] = -1; 
 
} 
 
 
//************************************ 
// display results 
void displayResults(void) 
{ 
 for(int i = 0;i<numPatterns;i++) 
 { 
  patNum = i; 
  calcNet(); 
  printf("pat = %d actual = %d neural model = %f\n",patNum+1,trainOutput[patNum],outPred); 
 } 
} 
 
 
//************************************ 
// calculate the overall error 
void calcOverallError(void) 
{ 
     RMSerror = 0.0; 
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     for(int i = 0;i<numPatterns;i++) 
        { 
         patNum = i; 
         calcNet(); 
         RMSerror = RMSerror + (errThisPat * errThisPat); 
        } 
     RMSerror = RMSerror/numPatterns; 
     RMSerror = sqrt(RMSerror); 
} 
 
 
 
//============================================================== 
//********** THIS IS THE MAIN PROGRAM ************************** 
//============================================================== 
 
 
int main(void) 
{ 
 // seed random number function 
 srand ( time(NULL) ); 
 
 // initiate the weights 
 initWeights(); 
 
 // load in the data 
 initData(); 
 
 // train the network 
    for(int j = 0;j <= numEpochs;j++) 
    {   for(int i = 0;i<numPatterns;i++) 
        { //select a pattern at random 
          patNum = rand()%numPatterns; 
 
          //calculate the current network output 
          //and error for this pattern 
          calcNet(); 
 
          //change network weights 
          WeightChangesHO(); 
          WeightChangesIH(); 
        } 
 
        //display the overall network error 
        //after each epoch 
        calcOverallError(); 
        printf("epoch = %d RMS Error = %f\n",j,RMSerror); 
    } 
 
 //training has finished 
 //display the results 
 displayResults(); 
 
 
 system("PAUSE"); 
 return 0;} 
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APPENDIX C.  WEIGHT GENERATION NEURAL NETWORK 
CODE 

//////////////////////////////////////////////////////////////////////////// 
//Reconfigurable Neural Network Weight Generation and 
//Comparison Basis code. 
//Based off Original source code by Dr Phil Brierley 
//www.philbrierley.com 
//Modifications made by LT Scott P. Bailey, USN 
//This code may be freely used and modified at will 
//C++ Compiled using g++ GNU C++ compiler/ 
//////////////////////////////////////////////////////////////////////////// 
 
#include <iostream.h> 
#include <stdlib.h> 
#include <stdio.h> 
#include <time.h> 
#include <math.h> 
using std::cout; 
using std::endl; 
 
 
//// Data dependent settings //// 
#define numInputs  1024 //representing the 32x32 input image spread across 
// 1024 input 'neurons'.  Intention is to treat input weights as a memory 
// access in the SRC hardware, selected by a 1 or not with a 0. 
#define numPatterns  5 //Network is trained on 5 'images' approximated from 
//Prof. Pace's book 'Low Probability of Intercept Radar':  The order of 
//images in trainInputs array is:  P4, T4, T3, T2, and NoInput, an array of 
//zeros.  The testInputs array currently holds two sets of the trainInputs 
//data, for use in future comparitive testing. 
#define numOutputs 5  //Number of Outputs is five.  
#define numTESTPatterns 10 //Used for future comparitive testing. 
 
 
//// User defineable settings //// 
#define numHidden 5 
const int numEpochs = 1000; 
const double LR_IH = 0.7; 
const double LR_HO = 0.07; 
 
 
//// functions //// 
void initWeights(); 
void initData(); 
void calcNet(); 
void WeightChangesHO(); 
void WeightChangesIH(); 
void calcOverallError(); 
void displayResults(); 
double getRand(); 
 
 
//// variables //// 
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int patNum = 0; 
//double errThisPat = 0.0; **shifted from variable to array 
//double outPred = 0.0;    *shifted from variable to array 
double RMSerror = 0.0; 
 
// the outputs of the hidden neurons 
double hiddenVal[numHidden]; 
 
// the output of output neurons 
double outPred[numOutputs]; 
double errThisPat[numOutputs]; 
 
// the weights 
double weightsIH[numInputs][numHidden]; 
int intweightsIH[numInputs][numHidden]; 
int posmax = 0; 
int negmax = 0; 
//double weightsHO[numHidden]; 
double weightsHO[numHidden][numOutputs]; 
int intweightsHO[numHidden][numOutputs]; 
 
//the output file 
FILE * outfile; 
// the data 
int trainInputs[numPatterns][numInputs] = { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 
0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 
0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 
0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 
0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 
0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0 } , { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
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0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 
0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 
0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 
1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 
1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 
1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 
0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 
0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } , { 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 
0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 
1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 
1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 
1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 
0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 
1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 
1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 
0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 
1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 
1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 
1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } , { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
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0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } } ; 
int testInputs[numTESTPatterns][numInputs] = { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 
0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 
1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 
1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } , { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 
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1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 
0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 
0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 
0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 
1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 
0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 
1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 
0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0 } , { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
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0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 
0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 
0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 
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0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 
1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 
0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 
1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 
0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0 } , { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 
0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 
1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 
0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 
0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 
0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 
1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 
0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } , { 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 
1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 
1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 
0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 
1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } , { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
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0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } } ; 
int trainOutput[numPatterns][numOutputs]; 
 
 
//============================================================== 
//************** function definitions ************************** 
//============================================================== 
 
 
//*********************************** 
// calculates the network output 
void calcNet(void) 
{ 
    //calculate the outputs of the hidden neurons 
    //the hidden neurons have a sigmoid transfer function 
    //equal to (1/1+exp(-x)). 
    int i = 0; 
    for(i = 0;i<numHidden;i++) 
    { 
   hiddenVal[i] = 0.0; 
 
        for(int j = 0;j<numInputs;j++) 
        { 
    hiddenVal[i] = hiddenVal[i] + (trainInputs[patNum][j] * weightsIH[j][i]); 
        } 
 
        hiddenVal[i] =(1/(1+exp(-(hiddenVal[i])))); //sigmoid 
    } 
 
   //calculate the output of the network 
   //the output neurons have a pure linear transfer function, 
   //which means summed and weighted input = output for this layers' nodes 
 
   for(int i = 0;i<numOutputs;i++) 
   { 
     outPred[i] = 0.0; 
        
    for(int j = 0;j<numHidden;j++) 
     { 
       outPred[i] = outPred[i] + ( hiddenVal[j] * weightsHO[j][i]); 
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       errThisPat[i] = outPred[i] - trainOutput[patNum][i]; 
     } 
   } 
    //calculate the error 
 
} 
//*********************************** 
// calculates the network output using integer weights 
void intcalcNet(void) 
{ 
    //calculate the outputs of the hidden neurons 
    //the hidden neurons have sigmoid activation function 
    int i = 0; 
    for(i = 0;i<numHidden;i++) 
    { 
   hiddenVal[i] = 0.0; 
 
        for(int j = 0;j<numInputs;j++) 
        { 
    hiddenVal[i] = hiddenVal[i] + (trainInputs[patNum][j] * ((static_cast<double>(intweightsIH[j][i]))/8)); 
        } 
 
        hiddenVal[i] =(1/(1+exp(-(hiddenVal[i])))); 
    } 
 
   //calculate the output of the network 
   //the output neurons have pure linear activation functions 
 
   for(int i = 0;i<numOutputs;i++) 
   { 
     outPred[i] = 0.0; 
        
    for(int j = 0;j<numHidden;j++) 
     { 
       outPred[i] = outPred[i] + ( hiddenVal[j] * ((static_cast<double>(intweightsHO[j][i]))/8)); 
       errThisPat[i] = outPred[i] - trainOutput[patNum][i]; 
     } 
   } 
    //calculate the error 
 
} 
 
//************************************ 
//adjust the weights hidden-output 
void WeightChangesHO(void) 
{ 
 for(int i = 0;i<numHidden;i++) 
   { 
  for(int k = 0;k<numOutputs;k++) 
   { 
    double weightChange = LR_HO * errThisPat[k] * hiddenVal[i]; 
    weightsHO[i][k] = weightsHO[i][k] - weightChange; 
 
    //regularisation on the output weights 
    if (weightsHO[i][k] < -5.0) 
    { 



58 

     weightsHO[i][k] = -5.0; 
    } 
    else if (weightsHO[i][k] > 5.0) 
    { 
     weightsHO[i][k] = 5.0; 
    } 
   } 
   } 
 
} 
 
//************************************ 
// adjust the weights input-hidden 
void WeightChangesIH(void) 
{ 
 
  for(int i = 0;i<numOutputs;i++) 
  { 
    for(int j = 0;j<numInputs;j++) 
   {   
    for(int k = 0;k<numHidden;k++) 
   { 
    double x = 1 - (hiddenVal[k] * hiddenVal[k]); 
    x = x * weightsHO[k][i] * errThisPat[i] * LR_IH; 
    x = x * trainInputs[patNum][j]; 
    double weightChange = x; 
    weightsIH[j][k] = weightsIH[j][k] - weightChange; 
   } 
  } 
  } 
} 
 
 
//************************************ 
// generates a random number 
double getRand(void) 
{ 
 return ((double)rand())/(double)RAND_MAX; 
} 
 
 
 
//************************************ 
// set weights to random numbers  
void initWeights(void) 
{ 
  for(int j = 0;j<numHidden;j++) 
 { 
    for(int i = 0;i<numInputs;i++) 
    { 
     weightsIH[i][j] = (getRand() - 0.5)/5; 
    } 
    for(int i = 0;i<numOutputs;i++) 
    { 
     weightsHO[j][i] = (getRand() - 0.5)/2; 
    } 
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  } 
 
} 
//************************************ 
// set weights to random numbers  
void Integerize(void) 
{ 
 
 for(int j = 0;j<numHidden;j++) 
 { 
    for(int i = 0;i<numInputs;i++) 
    { 
      double zed = weightsIH[i][j];  
     intweightsIH[i][j] = static_cast<int>(zed * 8); 
    } 
    for(int i = 0;i<numOutputs;i++) 
    { 
      double zod = weightsHO[j][i]; 
     intweightsHO[j][i] = static_cast<int>(zod * 8); 
    } 
  } 
 
} 
 
//************************************ 
// set weights to random numbers  
void printWeights(void) 
{ 
 
 for(int j = 0;j<numHidden;j++) 
 { 
    for(int i = 0;i<numInputs;i++) 
    { 
      cout << "WeightIH [" << i << "][" << j << "] =" << weightsIH[i][j] << "\t | IntWeightIH [" << i << "][" << j << "] =" << 
((static_cast<float>(intweightsIH[i][j]))/8) << endl; 
    } 
    for(int i = 0;i<numOutputs;i++) 
    { 
      cout << "WeightHO [" << j << "][" << i << "] =" << weightsHO[j][i] << "\t | IntWeightHO [" << j << "][" << i << "] =" << 
((static_cast<float>(intweightsHO[j][i]))/8) << endl; 
    } 
  } 
 // output weights in integer form for utilization on SRC 
 for(int j = 0;j<numHidden;j++) 
 { 
    for(int i = 0;i<numInputs;i++) 
    { 
      printf("True INTWeightIH [%d][%d] = %i \n", i,j,intweightsIH[i][j]); 
      if (intweightsIH[i][j] > posmax) { 
 posmax = intweightsIH[i][j];} 
      else if (intweightsIH[i][j] < negmax) { 
 negmax = intweightsIH[i][j];} 
    } 
    for(int i = 0;i<numOutputs;i++) 
    { 
      printf("True IntWeightHO [%d][%d] = %i \n",j,i,intweightsHO[j][i]); 
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    } 
  } 
 printf("Posmax = %i       Negmax = %i",posmax,negmax); 
} 
 
 
//************************************ 
// read in the data 
void initData(void) 
{ 
    cout << "initializing data" << endl; 
 
    // the data here is the output setup for each pattern 
    // Node 0 should fire only for P4 pattern (Pattern 0) 
    // Node 1 should fire only for T4 pattern (Pattern 1) 
    // Node 2 should fire only for T3 pattern (Pattern 2) 
    // Node 3 should fire only for T2 pattern (Pattern 3) 
    // Node 4 should fire only for no input   (Pattern 4) 
 
 
    trainOutput[0][0] = 1; 
    trainOutput[0][1] = 0; 
    trainOutput[0][2] = 0; 
    trainOutput[0][3] = 0; 
    trainOutput[0][4] = 0; 
 
    trainOutput[1][0] = 0; 
    trainOutput[1][1] = 1; 
    trainOutput[1][2] = 0; 
    trainOutput[1][3] = 0; 
    trainOutput[1][4] = 0; 
 
    trainOutput[2][0] = 0; 
    trainOutput[2][1] = 0; 
    trainOutput[2][2] = 1; 
    trainOutput[2][3] = 0; 
    trainOutput[2][4] = 0; 
 
    trainOutput[3][0] = 0; 
    trainOutput[3][1] = 0; 
    trainOutput[3][2] = 0; 
    trainOutput[3][3] = 1; 
    trainOutput[3][4] = 0; 
 
    trainOutput[4][0] = 0; 
    trainOutput[4][1] = 0; 
    trainOutput[4][2] = 0; 
    trainOutput[4][3] = 0; 
    trainOutput[4][4] = 1; 
 
    cout << "Data Initialization complete" << endl; 
} 
 
 
//************************************ 
// display results 
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void displayResults(void) 
{ 
 for(int i = 0;i<numTESTPatterns;i++) 
 { 
   for(int j = 0;j<numOutputs;j++) 
     { 
  patNum = i; 
  calcNet(); 
  printf("pat = %d output neuron = %d actual = %d neural model = 
%f\n",patNum+1,j+1,trainOutput[patNum][j],outPred[j]); 
 } 
   cout << endl; 
 } 
} 
 
 
//************************************ 
// calculate the overall error 
void calcOverallError(void) 
{ 
     RMSerror = 0.0; 
     for(int i = 0;i<numPatterns;i++) 
        { 
         patNum = i; 
         calcNet(); 
         RMSerror = RMSerror + (errThisPat[i] * errThisPat[i]); 
        } 
     RMSerror = RMSerror/numPatterns; 
     RMSerror = sqrt(RMSerror); 
} 
//************************************ 
// calculate the overall error 
void calcINTError(void) 
{ 
     RMSerror = 0.0; 
     for(int i = 0;i<numPatterns;i++) 
        { 
         patNum = i; 
         intcalcNet(); 
         RMSerror = RMSerror + (errThisPat[i] * errThisPat[i]); 
        } 
     RMSerror = RMSerror/numPatterns; 
     RMSerror = sqrt(RMSerror); 
     cout << "Integerized RMS error:" << RMSerror << endl; 
} 
 
 
 
//============================================================== 
//********** THIS IS THE MAIN PROGRAM ************************** 
//============================================================== 
 
 
int main(void) 
{ 
 // seed random number function 
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  time_t start, finish; //variables for timing calculations 
  double timediff; //difference holder for timing output 
 
 start = clock(); 
 srand ( time(NULL) ); 
 outfile = fopen ("weightout","w"); 
 
 // initiate the weights 
 initWeights(); 
 
 // load in the data 
 initData(); 
 
 // train the network 
    for(int j = 0;j <= numEpochs;j++) 
    { 
        for(int i = 0;i<numPatterns;i++) 
        { 
          //select a pattern at random 
          patNum = rand()%numPatterns; 
 
          //calculate the current network output 
          //and error for this pattern 
          calcNet(); 
 
          //change network weights 
          WeightChangesHO(); 
          WeightChangesIH(); 
        } 
 
        //display the overall network error 
        //after each epoch 
        calcOverallError(); 
 
        if (!(j%10)){ 
        printf("epoch = %d RMS Error = %f\n",j,RMSerror); 
 } 
} 
    finish = clock(); 
 //training has finished 
 //display the results 
    Integerize(); 
 intcalcNet(); 
 displayResults(); 
 calcINTError(); 
 printWeights(); 
 for(int i = 0;i<numInputs;i++) 
        { 
 fprintf (outfile, "%08X%08X\n", intweightsIH[i][0], intweightsIH[i][1]); 
        } 
 for(int i = 0;i<numOutputs;i++) 
        { 
 fprintf (outfile, "%08X%08X\n", intweightsHO[0][i], intweightsHO[1][i]); 
        } 
 for(int i = 0;i<numInputs;i++) 
        { 
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 fprintf (outfile, "%08X%08X\n", intweightsIH[i][2], intweightsIH[i][3]); 
        } 
 for(int i = 0;i<numOutputs;i++) 
        { 
 fprintf (outfile, "%08X%08X\n", intweightsHO[2][i], intweightsHO[3][i]); 
        } 
for(int i = 0;i<numInputs;i++) 
        { 
 fprintf (outfile, "00000000%08X\n", intweightsIH[i][4]); 
        } 
for(int i = 0;i<numOutputs;i++) 
        { 
 fprintf (outfile, "00000000%08X\n", intweightsHO[4][i]); 
        } 
          
    cout << "\nTime required for network training (seconds): " 
         << ((double)(finish - start))/CLOCKS_PER_SEC << "\n"; 
 start = clock(); 
 for(int k = 0;k<10000;k++) 
   { 
     patNum = k%numPatterns;  //sequentially run through all patterns 2000 
                              //times each for timing test. 
     calcNet();               //calculate and discard output since we are only 
                              //obtaining timing data here. 
   } 
 finish = clock(); 
 timediff = ((double)(finish-start))/CLOCKS_PER_SEC; 
 printf ( "Time in seconds required for 10000 network runs, patterns in sequential order: %.3f\t",timediff); 
 system("PAUSE"); 
 return 0; 
} 
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APPENDIX D.  OUTPUT OF WEIGHT GENERATION NEURAL 
NETWORK CODE 

initializing data 
Data Initialization complete 
epoch = 0 RMS Error = 0.870113 
epoch = 10 RMS Error = 0.565932 
epoch = 20 RMS Error = 0.461639 
epoch = 30 RMS Error = 0.337236 
epoch = 40 RMS Error = 0.360158 
epoch = 50 RMS Error = 0.352713 
. 
. 
. 
epoch = 950 RMS Error = 0.152628 
epoch = 960 RMS Error = 0.130989 
epoch = 970 RMS Error = 0.122706 
epoch = 980 RMS Error = 0.123740 
epoch = 990 RMS Error = 0.159130 
epoch = 1000 RMS Error = 0.112453 
pat = 1 output neuron = 1 actual = 1 neural model = 0.897610 
pat = 1 output neuron = 2 actual = 0 neural model = 0.115621 
pat = 1 output neuron = 3 actual = 0 neural model = -0.003307 
pat = 1 output neuron = 4 actual = 0 neural model = -0.100395 
pat = 1 output neuron = 5 actual = 0 neural model = 0.013487 
 
pat = 2 output neuron = 1 actual = 0 neural model = 0.117319 
pat = 2 output neuron = 2 actual = 1 neural model = 0.860009 
pat = 2 output neuron = 3 actual = 0 neural model = -0.036769 
pat = 2 output neuron = 4 actual = 0 neural model = 0.131088 
pat = 2 output neuron = 5 actual = 0 neural model = 0.078532 
 
pat = 3 output neuron = 1 actual = 0 neural model = -0.018217 
pat = 3 output neuron = 2 actual = 0 neural model = 0.002024 
pat = 3 output neuron = 3 actual = 1 neural model = 0.983433 
pat = 3 output neuron = 4 actual = 0 neural model = -0.015625 
pat = 3 output neuron = 5 actual = 0 neural model = 0.042241 
 
pat = 4 output neuron = 1 actual = 0 neural model = -0.087029 
pat = 4 output neuron = 2 actual = 0 neural model = 0.168297 
pat = 4 output neuron = 3 actual = 0 neural model = -0.005189 
pat = 4 output neuron = 4 actual = 1 neural model = 0.854516 
pat = 4 output neuron = 5 actual = 0 neural model = 0.016214 
 
pat = 5 output neuron = 1 actual = 0 neural model = 0.005419 
pat = 5 output neuron = 2 actual = 0 neural model = 0.006125 
pat = 5 output neuron = 3 actual = 0 neural model = 0.045536 
pat = 5 output neuron = 4 actual = 0 neural model = 0.000751 
pat = 5 output neuron = 5 actual = 1 neural model = 0.891801 
 
pat = 6 output neuron = 1 actual = 0 neural model = 0.897610 
pat = 6 output neuron = 2 actual = 0 neural model = 0.115621 
pat = 6 output neuron = 3 actual = 0 neural model = -0.003307 
pat = 6 output neuron = 4 actual = 0 neural model = -0.100395 
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pat = 6 output neuron = 5 actual = 0 neural model = 0.013487 
 
pat = 7 output neuron = 1 actual = 0 neural model = 0.117319 
pat = 7 output neuron = 2 actual = 0 neural model = 0.860009 
pat = 7 output neuron = 3 actual = 0 neural model = -0.036769 
pat = 7 output neuron = 4 actual = 0 neural model = 0.131088 
pat = 7 output neuron = 5 actual = 0 neural model = 0.078532 
 
pat = 8 output neuron = 1 actual = 0 neural model = -0.018217 
pat = 8 output neuron = 2 actual = 0 neural model = 0.002024 
pat = 8 output neuron = 3 actual = 0 neural model = 0.983433 
pat = 8 output neuron = 4 actual = 0 neural model = -0.015625 
pat = 8 output neuron = 5 actual = 0 neural model = 0.042241 
 
pat = 9 output neuron = 1 actual = 0 neural model = -0.087029 
pat = 9 output neuron = 2 actual = 0 neural model = 0.168297 
pat = 9 output neuron = 3 actual = 0 neural model = -0.005189 
pat = 9 output neuron = 4 actual = 0 neural model = 0.854516 
pat = 9 output neuron = 5 actual = 0 neural model = 0.016214 
 
pat = 10 output neuron = 1 actual = 0 neural model = 0.005419 
pat = 10 output neuron = 2 actual = 0 neural model = 0.006125 
pat = 10 output neuron = 3 actual = 0 neural model = 0.045536 
pat = 10 output neuron = 4 actual = 0 neural model = 0.000751 
pat = 10 output neuron = 5 actual = 0 neural model = 0.891801 
 
Integerized RMS error:0.256174 
WeightIH [0][0] =-0.0949626  | IntWeightIH [0][0] =0 
WeightIH [1][0] =0.0454202  | IntWeightIH [1][0] =0 
WeightIH [2][0] =0.0849273  | IntWeightIH [2][0] =0 
WeightIH [3][0] =0.0420867  | IntWeightIH [3][0] =0 
WeightIH [4][0] =-0.0554202  | IntWeightIH [4][0] =0 
WeightIH [5][0] =-0.072371  | IntWeightIH [5][0] =0 
. 
. 
. 
WeightIH [1018][0] =-0.0511559  | IntWeightIH [1018][0] =0 
WeightIH [1019][0] =-0.053143  | IntWeightIH [1019][0] =0 
WeightIH [1020][0] =0.000278342  | IntWeightIH [1020][0] =0 
WeightIH [1021][0] =-0.0561117  | IntWeightIH [1021][0] =0 
WeightIH [1022][0] =-0.0502371  | IntWeightIH [1022][0] =0 
WeightIH [1023][0] =0.0803187  | IntWeightIH [1023][0] =0 
WeightHO [0][0] =0.0290877  | IntWeightHO [0][0] =0 
WeightHO [0][1] =0.0101948  | IntWeightHO [0][1] =0 
WeightHO [0][2] =-0.89236  | IntWeightHO [0][2] =-0.875 
WeightHO [0][3] =0.0171173  | IntWeightHO [0][3] =0 
WeightHO [0][4] =1.74136  | IntWeightHO [0][4] =1.625 
WeightIH [0][1] =-0.0583113  | IntWeightIH [0][1] =0 
WeightIH [1][1] =0.000955512  | IntWeightIH [1][1] =0 
WeightIH [2][1] =0.0899366  | IntWeightIH [2][1] =0 
WeightIH [3][1] =-0.00610633  | IntWeightIH [3][1] =0 
WeightIH [4][1] =-0.0765403  | IntWeightIH [4][1] =0 
WeightIH [5][1] =-0.00479997  | IntWeightIH [5][1] =0 
. 
. 
. 
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WeightIH [1018][1] =0.0830811  | IntWeightIH [1018][1] =0 
WeightIH [1019][1] =-0.0938855  | IntWeightIH [1019][1] =0 
WeightIH [1020][1] =-0.0358995  | IntWeightIH [1020][1] =0 
WeightIH [1021][1] =-0.0402071  | IntWeightIH [1021][1] =0 
WeightIH [1022][1] =0.0763507  | IntWeightIH [1022][1] =0 
WeightIH [1023][1] =-0.0714589  | IntWeightIH [1023][1] =0 
WeightHO [1][0] =-0.106482  | IntWeightHO [1][0] =0 
WeightHO [1][1] =-0.847758  | IntWeightHO [1][1] =-0.75 
WeightHO [1][2] =0.127842  | IntWeightHO [1][2] =0.125 
WeightHO [1][3] =-0.129586  | IntWeightHO [1][3] =-0.125 
WeightHO [1][4] =1.70507  | IntWeightHO [1][4] =1.625 
WeightIH [0][2] =-0.0876872  | IntWeightIH [0][2] =0 
WeightIH [1][2] =0.0127844  | IntWeightIH [1][2] =0 
WeightIH [2][2] =0.0153877  | IntWeightIH [2][2] =0 
WeightIH [3][2] =0.0286805  | IntWeightIH [3][2] =0 
WeightIH [4][2] =-0.00752517  | IntWeightIH [4][2] =0 
WeightIH [5][2] =0.0157781  | IntWeightIH [5][2] =0 
. 
. 
. 
WeightIH [1018][2] =0.0147297  | IntWeightIH [1018][2] =0 
WeightIH [1019][2] =-0.0822293  | IntWeightIH [1019][2] =0 
WeightIH [1020][2] =-0.0118917  | IntWeightIH [1020][2] =0 
WeightIH [1021][2] =-0.0643692  | IntWeightIH [1021][2] =0 
WeightIH [1022][2] =0.0601095  | IntWeightIH [1022][2] =0 
WeightIH [1023][2] =-0.0802205  | IntWeightIH [1023][2] =0 
WeightHO [2][0] =0.204348  | IntWeightHO [2][0] =0.125 
WeightHO [2][1] =0.691712  | IntWeightHO [2][1] =0.625 
WeightHO [2][2] =-0.0315801  | IntWeightHO [2][2] =0 
WeightHO [2][3] =-0.723427  | IntWeightHO [2][3] =-0.625 
WeightHO [2][4] =0.0623189  | IntWeightHO [2][4] =0 
WeightIH [0][3] =-0.0978023  | IntWeightIH [0][3] =0 
WeightIH [1][3] =0.0632836  | IntWeightIH [1][3] =0 
WeightIH [2][3] =-0.0772838  | IntWeightIH [2][3] =0 
WeightIH [3][3] =-0.0270558  | IntWeightIH [3][3] =0 
WeightIH [4][3] =0.00305276  | IntWeightIH [4][3] =0 
WeightIH [5][3] =-0.0413171  | IntWeightIH [5][3] =0 
. 
. 
. 
WeightIH [1018][3] =-0.0974996  | IntWeightIH [1018][3] =0 
WeightIH [1019][3] =-0.0168094  | IntWeightIH [1019][3] =0 
WeightIH [1020][3] =-0.00281798  | IntWeightIH [1020][3] =0 
WeightIH [1021][3] =-0.0130025  | IntWeightIH [1021][3] =0 
WeightIH [1022][3] =0.0801024  | IntWeightIH [1022][3] =0 
WeightIH [1023][3] =0.0837144  | IntWeightIH [1023][3] =0 
WeightHO [3][0] =0.664175  | IntWeightHO [3][0] =0.625 
WeightHO [3][1] =-0.586286  | IntWeightHO [3][1] =-0.5 
WeightHO [3][2] =0.920633  | IntWeightHO [3][2] =0.875 
WeightHO [3][3] =0.605915  | IntWeightHO [3][3] =0.5 
WeightHO [3][4] =-1.79019  | IntWeightHO [3][4] =-1.75 
WeightIH [0][4] =-0.0793014  | IntWeightIH [0][4] =0 
WeightIH [1][4] =0.0429598  | IntWeightIH [1][4] =0 
WeightIH [2][4] =-0.0605446  | IntWeightIH [2][4] =0 
WeightIH [3][4] =-0.0926724  | IntWeightIH [3][4] =0 
WeightIH [4][4] =0.0719323  | IntWeightIH [4][4] =0 
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WeightIH [5][4] =-0.0639899  | IntWeightIH [5][4] =0 
. 
. 
. 
WeightIH [1018][4] =-0.0386649  | IntWeightIH [1018][4] =0 
WeightIH [1019][4] =-0.0958416  | IntWeightIH [1019][4] =0 
WeightIH [1020][4] =0.0242519  | IntWeightIH [1020][4] =0 
WeightIH [1021][4] =-0.0815059  | IntWeightIH [1021][4] =0 
WeightIH [1022][4] =-0.00462537  | IntWeightIH [1022][4] =0 
WeightIH [1023][4] =0.0869094  | IntWeightIH [1023][4] =0 
WeightHO [4][0] =-0.780292  | IntWeightHO [4][0] =-0.75 
WeightHO [4][1] =0.744388  | IntWeightHO [4][1] =0.625 
WeightHO [4][2] =-0.0334624  | IntWeightHO [4][2] =0 
WeightHO [4][3] =0.231484  | IntWeightHO [4][3] =0.125 
WeightHO [4][4] =0.0650451  | IntWeightHO [4][4] =0 
True INTWeightIH [0][0] = 0  
True INTWeightIH [1][0] = 0  
True INTWeightIH [2][0] = 0  
True INTWeightIH [3][0] = 0  
True INTWeightIH [4][0] = 0  
True INTWeightIH [5][0] = 0  
. 
. 
. 
True INTWeightIH [1018][4] = 0  
True INTWeightIH [1019][4] = 0  
True INTWeightIH [1020][4] = 0  
True INTWeightIH [1021][4] = 0  
True INTWeightIH [1022][4] = 0  
True INTWeightIH [1023][4] = 0  
True IntWeightHO [4][0] = -6  
True IntWeightHO [4][1] = 5  
True IntWeightHO [4][2] = 0  
True IntWeightHO [4][3] = 1  
True IntWeightHO [4][4] = 0  
Posmax = 428       Negmax = -727 
Time required for network training (seconds): 8.57 
Time in seconds required for 10000 network runs, patterns in sequential order: 1.020  
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APPENDIX E.  MLP NEURAL NETWORK CODE FOR THE SRC 

MAIN.C CODE: 
static char const cvsid[] = "$Id: main.c,v 2.1 2005/06/14 22:16:48 jls Exp $"; 
 
#include <libmap.h> 
#include <stdlib.h> 
 
void subr (int64_t I0[], int64_t I1[], int64_t I2[], int64_t I3[], int *Out0, int *Out1, int *Out2, int *Out3, int *Out4, int64_t 
*time, int mapnum); 
 
int main (int argc, char *argv[]) { 
    FILE *res_map, *res_cpu, *inweight, *inimage; 
//    int i = 0;  
//    int j = 0; 
//    int nog = 0; 
    int64_t *A; 
    int64_t *B; 
    int64_t *C; 
    int64_t *D; 
    int64_t atmp = 0; 
    int64_t btmp1 = 0; 
    int64_t ctmp1 = 0; 
    int64_t dtmp1 = 0; 
//    int64_t btmp2 = 0; 
//    int64_t ctmp2 = 0; 
//    int64_t dtmp2 = 0; 
    int sum0 = 0; 
    int sum1 = 0; 
    int sum2 = 0; 
    int sum3 = 0; 
    int sum4 = 0; 
    int64_t tm; 
//    int64_t pooky; 
//    int64_t adata;     
    int mapnum = 0; 
 
    if ((res_map = fopen ("res_map", "w")) == NULL) { 
        fprintf (stderr, "failed to open file 'res_map'\n"); 
        exit (1); 
        } 
 
    if ((res_cpu = fopen ("res_cpu", "w")) == NULL) { 
        fprintf (stderr, "failed to open file 'res_cpu'\n"); 
        exit (1); 
        } 
 
    if (argc < 2) { 
 fprintf (stderr, "Usage: ./ex07 imagefile\n"); 
 exit (1); 
 } 
 
    inimage = fopen (argv[ 1 ],"rt"); //input of image data- data must be 64-bit hex value array 
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    if ( !inimage ) { 
      fprintf (stderr, "%s could not be opened./n", argv[ 1 ]); 
      exit (1); 
 } 
 
    A = (int64_t*) malloc (32 * sizeof (int64_t)); 
    B = (int64_t*) malloc (1029 * sizeof (int64_t)); 
    C = (int64_t*) malloc (1029 * sizeof (int64_t)); 
    D = (int64_t*) malloc (1029 * sizeof (int64_t)); 
    srandom (99); 
    inweight = fopen ("weightout","rt"); //change weightout to any weight file 
// NOTE:  This program is set up to accept weights ONLY in the current order of  
// Neuron 0 and 1 input to hidden weights in hex right next to each other (x1024),  
// followed by Neuron 0 and 1 hidden-to-output weights in hex (x5).  Neuron 2 + 3 
// follows in a similar manner (x1029), and finally Neuron 4 weights with zero padding  
// (x1029), allowing maximum use of bandwidth. 
     
    for (int j=0; j<(1029); j++) { //this inputs Neuron 0 and 1 weights (first and second layer) 
      fscanf (inweight,"%llx",&btmp1);  //into array 'B'. 
 B[j] = btmp1; 
 } 
     for (int j=0; j<(1029); j++) { //This inputs Neuron 2 and 3 weights (first and second layer) 
     fscanf (inweight,"%llx",&ctmp1);  //into array 'C'. 
 C[j] = ctmp1; 
 } 
    for (int j=0; j<(1029); j++) {  //This inputs Neuron 4 weights (first and second layer) into 
     fscanf (inweight,"%llx",&dtmp1); //array 'D'. 
 D[j] = dtmp1; 
 } 
 
//    This was an old (and failed) way I was trying to initially input weights 
//    if we were dealing in pure data it may have worked. 
//    fread (B, 8, 1024, inweight);  //read weight 0 and 1 data 
//    fread (C, 8, 1024, inweight);  //read weight 2 and 3 data 
//    fread (D, 4, 1024, inweight);  //read weight 4 data 
    fclose (inweight); 
 
    for (int j=0; j<(32); j++) { 
        fscanf (inimage,"%qi",&atmp);    //loading A with image data 
 A[j] = atmp; 
 } 
    fclose (inimage); 
 
//*************************************************************************************** 
//  TESTING ROUTINES ONLY - USED IN PROGRAM DEVELOPMENT 
//*************************************************************************************** 
//   for (i=0; i<32; i++) { 
//       A[i] = 613566756; //setting up a series of 32 0's, followed by 16 '100' patterns 
// } 
// 
//    nog = 32*32; 
//    for (j=0; j<=(nog-1); j++) { 
// B[j] = j; 
// if (!(j%32)) { 
// adata = 613566756; 
// } 
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//      printf ("B[%d] = %d ", j, B[j]); 
//      pooky = adata % 2; 
//      adata = adata>>1; 
// printf ("Enabler is %d \n", pooky); 
// } 
//**************************************************************************************** 
//  TESTING ROUTINE TO DETERMINE FSCANF INPUT CORRECTNESS - DETERMINATION OF '7FFFFFFF'  
//  PROBLEM. 
//**************************************************************************************** 
//    for (int j=0; j<(32); j++) { 
//      printf ("A[%d] = %llx ", j, A[j]); 
//      atmp = A[j] >> 32; 
//      printf (" which is %ld", atmp); 
//      atmp = A[j] << 32; 
//      atmp = atmp >> 32; 
//      printf (" and %d \n", atmp); 
// } 
//    for (int j=0; j<(1024); j++) { 
//      printf ("B[%d] = %llx", j, B[j]); 
//      btmp1 = B[j] >> 32; 
//      printf (" which is %ld", btmp1); 
//      btmp1 = B[j] << 32; 
//      btmp1 = btmp1 >> 32; 
//      printf (" and %d \n", btmp1); 
// } 
//    for (int j=0; j<(1024); j++) { 
//      printf ("C[%d] = %llx", j, C[j]); 
//      ctmp1 = C[j] >> 32; 
//      printf (" which is %ld", ctmp1); 
//      ctmp1 = C[j] << 32; 
//      ctmp1 = ctmp1 >> 32; 
//      printf (" and %d \n", ctmp1); 
// } 
//    for (int j=0; j<(1024); j++) { 
//      printf ("D[%d] = %llx", j, D[j]); 
//      dtmp1 = D[j] >> 32; 
//      printf (" which is %ld", dtmp1); 
//      dtmp1 = D[j] << 32; 
//      dtmp1 = dtmp1 >> 32; 
//      printf (" and %d \n", dtmp1); 
// } 
//*************************************************************************************** 
//  END OF TESTING ROUTINES  
//*************************************************************************************** 
   map_allocate (1); 
 
    subr (A, B, C, D, &sum0, &sum1, &sum2, &sum3, &sum4, &tm, mapnum); 
 
    printf ("%lld clocks\n", tm); 
 
    printf ("Outputs= Neuron 0(%d) \n", sum0); 
    printf ("Outputs= Neuron 1(%d) \n", sum1); 
    printf ("Outputs= Neuron 2(%d) \n", sum2); 
    printf ("Outputs= Neuron 3(%d) \n", sum3); 
    printf ("Outputs= Neuron 4(%d) \n", sum4); 
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    map_free (1); 
 
    exit(0); 
    } 
 

 

EX07.MC CODE: 
/* $Id: ex07.mc,v 2.1 2005/06/14 22:16:48 jls Exp $ */ 
 
 
#include <libmap.h> 
 
void subr (int64_t I0[], int64_t I1[], int64_t I2[], int64_t I3[], int *Out0, int *Out1, int *Out2, int *Out3, int *Out4, 
int64_t *Out5, int64_t *Out6, int64_t *Out7, int64_t *Out8, int64_t *Out9, int *Out10, int *Out11, int *Out12, int *Out13, 
int *Out14, int64_t *time, int mapnum) { 
    OBM_BANK_A (AL, int64_t, MAX_OBM_SIZE) 
    OBM_BANK_B (BL, int64_t, MAX_OBM_SIZE) 
    OBM_BANK_C (CL, int64_t, MAX_OBM_SIZE) 
    OBM_BANK_D (DL, int64_t, MAX_OBM_SIZE) 
    int64_t t0, t1; 
    int i = 0; 
    int num2 = 1024;  //number of inputs 
    int num3 = 1029;  //number of inputs + number of outputs 
    int aodd = 0; 
    int aeven = 0; 
    int bodd = 0; 
    int beven = 0;  
    int codd = 0; 
    int ceven = 0; 
    int dodd = 0; 
    int deven = 0; 
    int wt2[5][5]; //node 0 2nd layer weight array 
//    int wt15; //node 0 2nd layer weight array  
//    int wt25; //node 0 2nd layer weight array  
//    int wt35; //node 0 2nd layer weight array  
//    int wt45; //node 0 2nd layer weight array   
    int ptr1 = 0; //pointer to OBM array values in 2nd layer 
    int ptr2 = 0; //pointer to BRAM array values in 2nd layer 
    int j = 0; 
    int k = 0; 
    int ctr = 0; 
    int hold0 = 0; 
    int hold1 = 0; 
    int hold2 = 0; 
    int hold3 = 0; 
    int hold4 = 0; 
    int sum0 = 0; 
    int sum1 = 0; 
    int sum2 = 0; 
    int sum3 = 0; 
    int sum4 = 0; 
    int sum5 = 0; 
    int sum6 = 0; 
    int sum7 = 0; 
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    int sum8 = 0; 
    int sum9 = 0;     
    int sig0 = 0; 
    int sig1 = 0; 
    int sig2 = 0; 
    int sig3 = 0; 
    int sig4 = 0; 
    int enable = 0; 
    int upgrade = 0; 
    int image = 0; 
 
    DMA_CPU (CM2OBM, AL, MAP_OBM_stripe(1,"A"), I0, 1, 32*sizeof(int64_t), 0); 
    wait_DMA (0); 
    DMA_CPU (CM2OBM, BL, MAP_OBM_stripe(1,"B"), I1, 1, 1029*sizeof(int64_t), 0); 
    wait_DMA (0); 
    DMA_CPU (CM2OBM, CL, MAP_OBM_stripe(1,"C"), I2, 1, 1029*sizeof(int64_t), 0); 
    wait_DMA (0); 
    DMA_CPU (CM2OBM, DL, MAP_OBM_stripe(1,"D"), I3, 1, 1029*sizeof(int64_t), 0); 
    wait_DMA (0); 
 
    read_timer (&t0); 
 
    for (i=0; i<num2; i++) { 
 cg_count_ceil_32(1, 0, i==0, 31, &k); 
 cg_count_ceil_32(k==0, 0, i==0, 32767, &j); 
 split_64to32 (AL[j], &aodd, &aeven); 
 if (k==0) {  //if then to allow loop unrolling method 
 image = aeven;  //must only update image when j increases 
 }   //otherwise shift will not matter 
 upgrade = j<<5; 
 ctr=((31 - k) + upgrade); //have to match array input 
     //up with image input 
 enable = image%2; //save on modulus calculations 
 split_64to32 (BL[ctr], &bodd, &beven); 
 cg_accum_add_32 (bodd,(enable),0,(i==0),&sum0); 
 cg_accum_add_32 (beven,(enable),0,(i==0),&sum1); 
 split_64to32 (CL[ctr], &codd, &ceven); 
 cg_accum_add_32 (codd,(enable),0,(i==0),&sum2); 
 cg_accum_add_32 (ceven,(enable),0,(i==0),&sum3); 
 split_64to32 (DL[ctr], &dodd, &deven); 
 cg_accum_add_32 (deven,(enable),0,(i==0),&sum4); 
 image=image>>1; 
 } 
    SIGFOUR (sum0, &sig0); 
    SIGFOUR (sum1, &sig1); 
    SIGFOUR (sum2, &sig2); 
    SIGFOUR (sum3, &sig3); 
    SIGFOUR (sum4, &sig4); 
    for (i=0; i<5; i++) { 
 ptr1 = (num2 + i); 
 split_64to32 (BL[ptr1], &bodd, &beven); 
        split_64to32 (CL[ptr1], &codd, &ceven); 
         split_64to32 (DL[ptr1], &dodd, &deven); 
 wt2[0][i] = (bodd * sig0);         
 wt2[1][i] = (beven * sig1);       
        wt2[2][i] = (codd * sig2);         
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        wt2[3][i] = (ceven * sig3);    //arrays prior to use. 
        wt2[4][i] = (deven * sig4); 
 } 
//******************************************************************************************************************************* 
// *** NOTE:  THIS CODE SECTION WAS OPTIMIZED FOR A 5-NODE HIDDEN LAYER WITH  **** 
// *** 5 OUTPUTS.  DUE TO CONCERNS REGARDING REUSABILITY OF CODE, THIS SECTION  **** 
// *** WAS NOT UTILIZED THOUGH IT ALLOWS A REDUCTION IN ABOUT 50 CLOCKS OF   **** 
// *** PROCESSING TIME.        **** 
// ****************************************************************************************************************************** 
// split_64to32 (BL[1024], &bodd, &beven); 
//        split_64to32 (CL[1024], &codd, &ceven); 
//        split_64to32 (DL[1024], &dodd, &deven); 
// wt00 = bodd; 
// wt01 = beven; 
// wt02 = codd; 
// wt03 = ceven; 
// wt04 = deven; 
// split_64to32 (BL[1025], &bodd, &beven); 
//        split_64to32 (CL[1025], &codd, &ceven); 
//        split_64to32 (DL[1025], &dodd, &deven); 
// wt10 = bodd; 
// wt11 = beven; 
//        wt12 = codd; 
//        wt13 = ceven; 
//        wt14 = deven; 
// split_64to32 (BL[1026], &bodd, &beven); 
//        split_64to32 (CL[1026], &codd, &ceven); 
//        split_64to32 (DL[1026], &dodd, &deven); 
// wt20 = bodd; 
// wt21 = beven; 
//        wt22 = codd; 
//        wt23 = ceven; 
//        wt24 = deven; 
// split_64to32 (BL[1027], &bodd, &beven); 
//        split_64to32 (CL[1027], &codd, &ceven); 
//        split_64to32 (DL[1027], &dodd, &deven); 
// wt30 = bodd; 
// wt31 = beven; 
//        wt32 = codd; 
//        wt33 = ceven; 
//        wt34 = deven; 
// split_64to32 (BL[1028], &bodd, &beven); 
//        split_64to32 (CL[1028], &codd, &ceven); 
//        split_64to32 (DL[1028], &dodd, &deven); 
// wt40 = bodd; 
// wt41 = beven; 
//        wt42 = codd; 
//        wt43 = ceven; 
//        wt44 = deven; 
//    wt00 = wt00 * sig0; 
//    wt01 = wt01 * sig1; 
//    wt02 = wt02 * sig2; 
//    wt03 = wt03 * sig3; 
//    wt04 = wt04 * sig4; 
//    wt10 = wt10 * sig0; 
//    wt11 = wt11 * sig1; 
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//    wt12 = wt12 * sig2; 
//    wt13 = wt13 * sig3; 
//    wt14 = wt14 * sig4; 
//    wt20 = wt20 * sig0; 
//    wt21 = wt21 * sig1; 
//    wt22 = wt22 * sig2; 
//    wt23 = wt23 * sig3; 
//    wt24 = wt24 * sig4; 
//    wt30 = wt30 * sig0; 
//    wt31 = wt31 * sig1; 
//    wt32 = wt32 * sig2; 
//    wt33 = wt33 * sig3; 
//    wt34 = wt34 * sig4; 
//    wt40 = wt40 * sig0; 
//    wt41 = wt41 * sig1; 
//    wt42 = wt42 * sig2; 
//    wt43 = wt43 * sig3; 
//    wt44 = wt44 * sig4; 
// 
     for (i=0; i<5; i++) { 
//     hold0 = (wt0[i] * sig0); 
     cg_accum_add_32 (wt2[i][0],1,0,(i==0),&sum5); 
//     hold1 = (wt1[i] * sig1); 
     cg_accum_add_32 (wt2[i][1],1,0,(i==0),&sum6); 
//     hold2 = (wt1[i] * sig2); 
     cg_accum_add_32 (wt2[i][2],1,0,(i==0),&sum7); 
//     hold3 = (wt3[i] * sig3); 
     cg_accum_add_32 (wt2[i][3],1,0,(i==0),&sum8); 
//     hold4 = (wt4[i] * sig4); 
     cg_accum_add_32 (wt2[i][4],1,0,(i==0),&sum9); 
     } 
// sum5 = (wt0[0] + wt1[0] + wt2[0] + wt3[0] + wt4[0]); 
// sum6 = (wt0[1] + wt1[1] + wt2[1] + wt3[1] + wt4[1]); 
// sum7 = (wt0[2] + wt1[2] + wt2[2] + wt3[2] + wt4[2]); 
// sum8 = (wt0[3] + wt1[3] + wt2[3] + wt3[3] + wt4[3]); 
// sum9 = (wt0[4] + wt1[4] + wt2[4] + wt3[4] + wt4[4]); 
   *Out0 = sum5; 
   *Out1 = sum6;     
   *Out2 = sum7; 
   *Out3 = sum8;     
   *Out4 = sum9; 
   *Out5= sum0; 
   *Out6= sum1;     
   *Out7= sum2; 
   *Out8= sum3;     
   *Out9= sum4; 
   *Out10 = sig0; 
   *Out11 = sig1;     
   *Out12 = sig2; 
   *Out13 = sig3;     
   *Out14 = sig4;   
    read_timer (&t1); 
    *time = t1 - t0; 
 
    } 
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APPENDIX F.  IMAGE CONVERSION PROGRAM 

//  conv.c - A program written to convert the binary bitmap files into hex 
//  representation for the SRC-6 Reconfigurable Neural Network Program. 
//  Written by LT Scott Bailey, Naval Postgraduate School. 2006 
//  Usage:  ./conv [name of file to convert] >> [name of output file] 
//************************************************************************ 
//*  NOTE:  This simple program will only convert pure binary ascii files 
//*  which are exactly 32 characters wide (33 with an endl), and 32 lines 
//*  in length.  In short, only a 32x32 bitmap generated with the  
//*  'bitmap' command and converted via the 'bmtoa -chars 01' line  
//*  can be successfully converted with this program, unless the format 
//*  is mimiced exactly.  This program places data into a format  
//*  utilized from Ensign Dane Brown's Thesis to pass preprocessed data 
//*  to the RANN.  If there are alterations to the bitmap size, the 
//*  'len' and 'wid' constants must be altered to match. 
//*********************************************************************** 
#include <iostream> 
#include <fstream> 
#include <iomanip> 
#include <cstdlib> 
using namespace std; 
 
int main (int argc, char *argv[]) { 
 ifstream infile; 
 const int wid = 8; //width of bitmap in 4-bit sections 
 const int len = 32;  //length of bitmap in lines 
 int cnt1,cnt2; 
 char tmp = 48; 
 int output; 
 if (argc < 2) { 
  fprintf (stderr, "Usage: ./conv inputfile\n"); 
  exit (1); 
  } 
 infile.open(argv[ 1 ],ios::in);  //input of image data, 32 lines of 32-bit binary ascii each. 
       
 if ( !infile ) { 
  fprintf (stderr, "%s could not be opened.\n", argv[ 1 ]); 
  exit (1); 
  } 
 
 for (cnt1 = 0; cnt1 < len; cnt1++) { 
  cout << "0x00000000"; 
  for (cnt2 = 0; cnt2 < wid; cnt2++) { 
  output = 0;  //clears output 
  tmp = infile.get(); 
  if (tmp == ('1')) { //obtain 2^3 value 
  output = 8; } 
  tmp = infile.get(); 
  if (tmp == ('1')) { //obtain 2^2 value 
  output = output + 4; } 
  tmp = infile.get(); 
  if (tmp == ('1')) { //obtain 2^1 value 
  output = output + 2; } 
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  tmp = infile.get(); 
  if (tmp == ('1')) { //obtain 2^0 value 
  output = output + 1; } 
  cout << hex << output; 
  } // end inner for loop and one line of code 
 tmp == infile.get(); //clears the endl from the input ASCII file 
 cout << endl;  //and sends it back out again. 
 }  //end outer loop and should have complete hex bitmap 
  //ready for use in the SRC 
 infile.close(); 
return 0; 
 } //end main 
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APPENDIX G.  SIGMOID FUNCTION VHDL FILES 

SIGFOUR.VHD: 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
--  Uncomment the following lines to use the declarations that are 
--  provided for instantiating Xilinx primitive components. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity SIGFOUR is 
    Port ( A : in std_logic_vector(31 downto 0); 
           Q : out std_logic_vector(31 downto 0)); 
end SIGFOUR; 
 
architecture Behavioral of SIGFOUR is 
 
begin 
   process(A) 
   begin 
   Q(31 downto 5) <= "000000000000000000000000000"; 
   if (A(31 downto 0) = "00000000000000000000000000000000" or  
   A(31 downto 0) = "00000000000000000000000000000001") then 
   Q(4 downto 0) <= "01000"; elsif  
   (A(31 downto 0) = "00000000000000000000000000000010" or  
   A(31 downto 0) = "00000000000000000000000000000011") then 
   Q(4 downto 0) <= "01001"; elsif 
   (A(31 downto 0) = "00000000000000000000000000000100" or  
   A(31 downto 0) = "00000000000000000000000000000101") then 
   Q(4 downto 0) <= "01010"; elsif 
   (A(31 downto 0) = "00000000000000000000000000000110" or  
   A(31 downto 0) = "00000000000000000000000000000111") then 
   Q(4 downto 0) <= "01011"; elsif 
   (A(31 downto 0) = "00000000000000000000000000001000" or  
   A(31 downto 0) = "00000000000000000000000000001001" or  
   A(31 downto 0) = "00000000000000000000000000001010") then 
   Q(4 downto 0) <= "01100"; elsif 
   (A(31 downto 0) = "00000000000000000000000000001011" or  
   A(31 downto 0) = "00000000000000000000000000001100" or  
   A(31 downto 0) = "00000000000000000000000000001101") then    
   Q(4 downto 0) <= "01101"; elsif 
   (A(31 downto 0) = "00000000000000000000000000001110" or  
   A(31 downto 0) = "00000000000000000000000000001111" or  
   A(31 downto 0) = "00000000000000000000000000010000" or  
   A(31 downto 0) = "00000000000000000000000000010001" or  
   A(31 downto 0) = "00000000000000000000000000010010") then 
   Q(4 downto 0) <= "01110"; elsif 
   (A(31 downto 0) = "00000000000000000000000000010011" or  
   A(31 downto 0) = "00000000000000000000000000010100" or  
   A(31 downto 0) = "00000000000000000000000000010101" or  
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   A(31 downto 0) = "00000000000000000000000000010110" or  
   A(31 downto 0) = "00000000000000000000000000010111" or  
   A(31 downto 0) = "00000000000000000000000000011000" or  
   A(31 downto 0) = "00000000000000000000000000011001" or  
   A(31 downto 0) = "00000000000000000000000000011010") then 
   Q(4 downto 0) <= "01111"; elsif 
   (A(31) = '0' and  
   A(31 downto 0) > "00000000000000000000000000011010") then 
   Q(4 downto 0) <= "10000"; elsif 
   A(31 downto 0) = "11111111111111111111111111111111" then 
   Q(4 downto 0) <= "01000"; elsif   
   (A(31 downto 0) = "11111111111111111111111111111101" or  
   A(31 downto 0) = "11111111111111111111111111111110") then 
   Q(4 downto 0) <= "00111"; elsif 
   (A(31 downto 0) = "11111111111111111111111111111011" or  
   A(31 downto 0) = "11111111111111111111111111111100") then 
   Q(4 downto 0) <= "00110"; elsif 
   (A(31 downto 0) = "11111111111111111111111111111001" or  
   A(31 downto 0) = "11111111111111111111111111111010") then 
   Q(4 downto 0) <= "00101"; elsif 
   (A(31 downto 0) = "11111111111111111111111111110110" or  
   A(31 downto 0) = "11111111111111111111111111110111" or  
   A(31 downto 0) = "11111111111111111111111111111000") then 
   Q(4 downto 0) <= "00100"; elsif 
   (A(31 downto 0) = "11111111111111111111111111110011" or  
   A(31 downto 0) = "11111111111111111111111111110100" or  
   A(31 downto 0) = "11111111111111111111111111110101") then    
   Q(4 downto 0) <= "00011"; elsif 
   (A(31 downto 0) = "11111111111111111111111111101110" or  
   A(31 downto 0) = "11111111111111111111111111101111" or  
   A(31 downto 0) = "11111111111111111111111111110000" or  
   A(31 downto 0) = "11111111111111111111111111110001" or  
   A(31 downto 0) = "11111111111111111111111111110010") then 
   Q(4 downto 0) <= "00010"; elsif 
   (A(31 downto 0) = "11111111111111111111111111100101" or  
   A(31 downto 0) = "11111111111111111111111111100110" or  
   A(31 downto 0) = "11111111111111111111111111100111" or  
   A(31 downto 0) = "11111111111111111111111111101000" or  
   A(31 downto 0) = "11111111111111111111111111101001" or  
   A(31 downto 0) = "11111111111111111111111111101010" or  
   A(31 downto 0) = "11111111111111111111111111101011" or  
   A(31 downto 0) = "11111111111111111111111111101100" or  
   A(31 downto 0) = "11111111111111111111111111101101") then 
   Q(4 downto 0) <= "00001"; else 
   Q(4 downto 0) <= "00000"; 
   end if; 
   end process; 
 
end Behavioral; 
 
BLK.V: 
module SIGFOUR (A,Q) /* synthesis syn_black_box  */  ; 
    input [31:0] A; 
    output [31:0] Q;    
endmodule 
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INFO FILE: 
BEGIN_DEF "SIGFOUR" 
    MACRO = "SIGFOUR"; 
    STATEFUL = NO; 
    EXTERNAL = NO; 
    PIPELINED = YES; 
    LATENCY = 0; 
 
    INPUTS = 1: 
      I0 = INT 32 BITS (A[31:0])  // explicit input 
      ; 
    OUTPUTS = 1: 
      O0 = INT 32 BITS (Q[31:0])  // explicit output 
      ; 
    DEBUG_HEADER = # 
        void SIGFOUR__dbg (int A, int Q); 
    #; 
    DEBUG_FUNC = # 
        void SIGFOUR__dbg (int A, int Q ) {    
 if (A <= -28)  
  Q = 0; else  
 if (-27 <= A <= -19)  
  Q = 1; else   
 if (-18 <= A <= -14)  
  Q = 2; else  
 if (-13 <= A <= -11)  
  Q = 3; else  
 if (-10 <= A <= -8)   
  Q = 4; else  
 if (-7 <= A <= -6)  
  Q = 5; else 
 if (-5 <= A <= -4)  
  Q = 6; else 
 if (-3 <= A <= -2)  
  Q = 7; else 
 if (-1 <= A <= 1)  
  Q = 8; else 
 if (2 <= A <= 3)  
  Q = 9; else 
 if (4 <= A <= 5)  
  Q = 10; else 
 if (6 <= A <= 7) 
  Q = 11; else 
 if (8 <= A <= 10) 
  Q = 12; else 
 if (11 <= A <= 13) 
  Q = 13; else 
 if (14 <= A <= 18) 
  Q = 14; else 
 if (19 <= A <= 26) 
  Q = 15; else  
  Q = 16;  
 } 
    #; 
END_DEF 
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APPENDIX H.  NETWORK OUTPUT GRAPHS  
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Figure 13. P4 Image Network Output Comparison 
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Figure 14. T4 Image Network Output Comparison 
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T3 Image Network Responses
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Figure 15. T3 Image Network Output Comparison 
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Figure 16. T2 Image Network Output Comparison 
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No Image Network Responses
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Figure 17. No Image Network Output Comparison 
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APPENDIX I.  RECONFIGURABLE-ENVIRONMENT ARTIFICIAL 
NEURAL NETWORK (RANN) INSTRUCTION GUIDE 

1. If new classification images are not being used, this step can be skipped.  

With new images, input-output pairing must be set by the user.  The use of 

‘One-of-C’ output is recommended for best results.  Multiple similar 

images can be used within the same classification for training, as long as 

the numPatterns variable is updated with the increased images, and the 

trainOutput array has the increased pattern classification data. The 

trainOutput classifications can be reused on similar patterns that are 

desired to be grouped together, but the output will probably not discern 

between different inputs in the same classification.  A change in the 

number of output classifications will require more output nodes to be 

added and changes made to the weight generation code, as well as the 

RANN code to support this.  Similarly, increasing hidden layer nodes or 

changing input image sizes will require modification of both programs.   

2. To test generalization, the images in testInput can be manipulated as the 

user desires.  It is recommended to leave the first five sections of the array 

the same, as these are identical to the training data and can serve as a basis 

for comparison. 

3. The weight generation program is then compiled.  To compile this 

program in a linux environment with executable name [DEFAULT] the 

command is:  g++ newint8.c –o [DEFAULT].  The compiled code is 

executed with the command: ./[DEFAULT] >> file, where ‘file’ is the 

name of the file desired for output as seen in Appendix D.  The code will 

also create a file called ‘weightout’ in the directory of the executable that 

will contain the weight values of the trained network. 

4. The ‘weightout’ file must be in the directory of the RANN code.  The 

RANN code is then compiled on the SRC with the command ‘make hw’.  

Please note that while code was added to the info file to simulate 
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execution of the VHDL sigmoid units, the ‘make debug’ SRC feature will 

not provide accurate output. 

5. Upon successful completion of ‘make hw’, the RANN can be executed 

with ./ex07 [INPUT] >> ‘file’, where [INPUT] is the input image in hex 

form, and ‘file’ is the desired name of the file to which output is 

redirected.  The redirection can be eliminated to view output on the screen.  

Alterations to the code will be required to stream input images in from 

other parallel code blocks, and thus the [INPUT] argument code would be 

required to be removed. 

6. It is strongly recommended to either have experience in the SRC-6 

programming environment, attend the 3-day Carte™ Workshop training 

session available by the company (see 

http://www.srccomp.com/TrainingSupport.htm) , or take EC 4820 prior to 

use of this code in order to have familiarity in its use.  This set of 

instructions is provided as a means of enabling recreation of results.    
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APPENDIX J. SRC-6 EXCLUSIVE-OR COMPARITOR CODE 

MAIN.C CODE: 
static char const cvsid[] = "$Id: main.c,v 2.1 2005/06/14 22:16:48 jls Exp $"; 
 
#include <libmap.h> 
#include <stdlib.h> 
 
void subr (int64_t I0[], int *Out0, int *Out1, int *Out2, int *Out3, int *Out4, int *Out5, int64_t *time, int mapnum); 
 
int main (int argc, char *argv[]) { 
    FILE *res_map, *res_cpu, *inimage; 
    int64_t *A; 
    int64_t atmp = 0; 
    int sum0 = 0; 
    int sum1 = 0; 
    int sum2 = 0; 
    int sum3 = 0; 
    int sum4 = 0;  
    int64_t tm; 
    int mapnum = 0; 
    int patnum = 0; 
    char patname [6][20] = { "Error Output" , "P4 Image" , "T4 Image" , "T3 Image" , "T2 Image" , "No Image" }; 
 
    if ((res_map = fopen ("res_map", "w")) == NULL) { 
        fprintf (stderr, "failed to open file 'res_map'\n"); 
        exit (1); 
        } 
 
    if ((res_cpu = fopen ("res_cpu", "w")) == NULL) { 
        fprintf (stderr, "failed to open file 'res_cpu'\n"); 
        exit (1); 
        } 
 
    if (argc < 2) { 
 fprintf (stderr, "Usage: ./ex07 imagefile\n"); 
 exit (1); 
 } 
 
    inimage = fopen (argv[ 1 ],"rt"); //input of image data- data must be 64-bit hex value array 
    if ( !inimage ) { 
      fprintf (stderr, "%s could not be opened./n", argv[ 1 ]); 
      exit (1); 
 } 
 
    A = (int64_t*) malloc (16 * sizeof (int64_t)); 
    srandom (99); 
 
 
    for (int j=0; j<(16); j++) { 
        fscanf (inimage,"%llx",&atmp);    //loading A with image data 
 A[j] = atmp; 
 } 
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    fclose (inimage); 
 
   map_allocate (1); 
 
    subr (A, &sum0, &sum1, &sum2, &sum3, &sum4, &patnum, &tm, mapnum); 
 
    printf ("%lld clocks\n", tm); 
 
    printf ("Difference Output= Pattern 1(%d) \n", sum0); 
    printf ("Difference Output= Pattern 2(%d) \n", sum1); 
    printf ("Difference Output= Pattern 3(%d) \n", sum2); 
    printf ("Difference Output= Pattern 4(%d) \n", sum3); 
    printf ("Difference Output= Pattern 5(%d) \n", sum4); 
    printf ("Closest Match is Pattern %d \n", patnum); 
    printf ("Which is: %s \n", patname[patnum]); 
 
    map_free (1); 
 
    exit(0); 
    } 
 
EX07.MC CODE: 
/* $Id: ex07.mc,v 2.1 2005/06/14 22:16:48 jls Exp $ */ 
 
 
#include <libmap.h> 
 
void subr (int64_t I0[], int *Out0, int *Out1, int *Out2, int *Out3, int *Out4, 
int *Out5, int64_t *time, int mapnum) { 
    OBM_BANK_A (AL, int64_t, MAX_OBM_SIZE) 
    int64_t t0, t1, pat1xor, pat2xor, pat3xor, pat4xor, pat5xor, patholder; 
    int num1 = 16; //this is the main loop counter - 16 64-bit image values 
    int i = 0; 
    int sum0 = 0; 
    int sum1 = 0; 
    int sum2 = 0; 
    int sum3 = 0; 
    int sum4 = 0; 
    int patnum = 0; 
    int pat1pop = 0; //results from 1pat popcount 
    int pat1cntr = 0; //counter for 1pat 
    int pat1name = 1; //must link 1 to name "P4 Input" in main.c 
    int pat2pop = 0; //results from 1pat popcount 
    int pat2cntr = 0; //counter for 1pat 
    int pat2name = 2; //must link 1 to name "T4 Input" in main.c 
    int pat3pop = 0; //results from 1pat popcount 
    int pat3cntr = 0; //counter for 1pat 
    int pat3name = 3; //must link 1 to name "T3 Input" in main.c 
    int pat4pop = 0; //results from 1pat popcount 
    int pat4cntr = 0; //counter for 1pat 
    int pat4name = 4; //must link 1 to name "T2 Input" in main.c 
    int pat5pop = 0; //results from 1pat popcount 
    int pat5cntr = 0; //counter for 1pat 
    int pat5name = 5; //must link 1 to name "No Input" in main.c 
//********************************************************************************************************************** 
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//*  THIS IS THE IMAGE VARIABLE SPACE 
//*  Note that this is not a very useful way to store the data.  The CARTE 2.2 Programming Environment allows for 
//*  const BRAM arrays which would make this storage easier to use. 
  
    int64_t pat10 = 0x0000000000000000; 
    int64_t pat11 = 0x0000000000000000; 
    int64_t pat12 = 0x0000000000000000; 
    int64_t pat13 = 0x0000000000000000; 
    int64_t pat14 = 0x0000000000000000; 
    int64_t pat15 = 0x0000000000000000; 
    int64_t pat16 = 0x0000000000000000; 
    int64_t pat17 = 0x0000000040080180; 
    int64_t pat18 = 0xc018070080700600; 
    int64_t pat19 = 0x00e01c0001c03c01; 
    int64_t pat1a = 0x038030070700600e; 
    int64_t pat1b = 0x0e00e01c1c01c038; 
    int64_t pat1c = 0x38038070700700e0; 
    int64_t pat1d = 0xe00e01c0800401c0; 
    int64_t pat1e = 0x0000000000000000; 
    int64_t pat1f = 0x0000000000000000; 
 
    int64_t pat20 = 0x0000000000000000; 
    int64_t pat21 = 0x0000000000000000; 
    int64_t pat22 = 0x0000000000000000; 
    int64_t pat23 = 0x0000000000000000; 
    int64_t pat24 = 0x0000000000000000; 
    int64_t pat25 = 0x0000000000000000; 
    int64_t pat26 = 0x0000000000000000; 
    int64_t pat27 = 0x0000000000000000; 
    int64_t pat28 = 0x0000000080401008; 
    int64_t pat29 = 0xc0e0381ca050140a; 
    int64_t pat2a = 0x70380e072c160582; 
    int64_t pat2b = 0x1e0f03c13f1f87e3; 
    int64_t pat2c = 0x1e0f03c12c160582; 
    int64_t pat2d = 0x70380e07a050140a; 
    int64_t pat2e = 0xc0e0381c80401008; 
    int64_t pat2f = 0x0000000000000000; 
 
    int64_t pat30 = 0x0000000000000000; 
    int64_t pat31 = 0x0000000000000000; 
    int64_t pat32 = 0x0000000000000000; 
    int64_t pat33 = 0x0000000000000000; 
    int64_t pat34 = 0x0000000000000000; 
    int64_t pat35 = 0x0000000000000000; 
    int64_t pat36 = 0x0000000000000000; 
    int64_t pat37 = 0x0000000000000000; 
    int64_t pat38 = 0x0000000000000000; 
    int64_t pat39 = 0x060606060f0f0f0f; 
    int64_t pat3a = 0x2626262670707070; 
    int64_t pat3b = 0xe0e0e0e0c0c0c0c0; 
    int64_t pat3c = 0xe0e0e0e070707070; 
    int64_t pat3d = 0x262626260f0f0f0f; 
    int64_t pat3e = 0x0606060600000000; 
    int64_t pat3f = 0x0000000000000000; 
 
    int64_t pat40 = 0x0000000000000000; 
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    int64_t pat41 = 0x0000000000000000; 
    int64_t pat42 = 0x0000000000000000; 
    int64_t pat43 = 0x0000000000000000; 
    int64_t pat44 = 0x0000000000000000; 
    int64_t pat45 = 0x0000000000000000; 
    int64_t pat46 = 0x0000000000000000; 
    int64_t pat47 = 0x0000000000000000; 
    int64_t pat48 = 0x00000040020380e0; 
    int64_t pat49 = 0x0707c0a00d9381b6; 
    int64_t pat4a = 0x3df00fff47081847; 
    int64_t pat4b = 0x976c375ab70c1846; 
    int64_t pat4c = 0x07380ffefdf000e6; 
    int64_t pat4d = 0x8d90604007003000; 
    int64_t pat4e = 0x0200000000000000; 
    int64_t pat4f = 0x0000000000000000; 
 
    int64_t pat50 = 0x0000000000000000; 
    int64_t pat51 = 0x0000000000000000; 
    int64_t pat52 = 0x0000000000000000; 
    int64_t pat53 = 0x0000000000000000; 
    int64_t pat54 = 0x0000000000000000; 
    int64_t pat55 = 0x0000000000000000; 
    int64_t pat56 = 0x0000000000000000; 
    int64_t pat57 = 0x0000000000000000; 
    int64_t pat58 = 0x0000000000000000; 
    int64_t pat59 = 0x0000000000000000; 
    int64_t pat5a = 0x0000000000000000; 
    int64_t pat5b = 0x0000000000000000; 
    int64_t pat5c = 0x0000000000000000; 
    int64_t pat5d = 0x0000000000000000; 
    int64_t pat5e = 0x0000000000000000; 
    int64_t pat5f = 0x0000000000000000; 
 
 
 
 
 
//* END OF IMAGE VARIABLE SPACE 
//********************************************************************************************************************** 
 
     
    DMA_CPU (CM2OBM, AL, MAP_OBM_stripe(1,"A"), I0, 1, 32*sizeof(int64_t), 0); 
    wait_DMA (0); 
 
 
    read_timer (&t0); 
    pat1cntr = 0; 
    pat2cntr = 0; 
    pat3cntr = 0; 
    pat4cntr = 0; 
    pat5cntr = 0; 
    pat1xor = AL[0] ^ pat10; //xor comparison 
    popcount_64 (pat1xor, &pat1pop); 
    pat1cntr = pat1cntr + pat1pop; 
    pat2xor = AL[0] ^ pat20; //xor comparison 
    popcount_64 (pat2xor, &pat2pop); 
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    pat2cntr = pat2cntr + pat2pop; 
    pat3xor = AL[0] ^ pat30; //xor comparison 
    popcount_64 (pat3xor, &pat3pop); 
    pat3cntr = pat3cntr + pat3pop; 
    pat4xor = AL[0] ^ pat40; //xor comparison 
    popcount_64 (pat4xor, &pat4pop); 
    pat4cntr = pat4cntr + pat4pop; 
    pat5xor = AL[0] ^ pat50; //xor comparison 
    popcount_64 (pat5xor, &pat5pop); 
    pat5cntr = pat5cntr + pat5pop; 
    pat1xor = AL[1] ^ pat11; //xor comparison 
    popcount_64 (pat1xor, &pat1pop); 
    pat1cntr = pat1cntr + pat1pop; 
    pat2xor = AL[1] ^ pat21; //xor comparison 
    popcount_64 (pat2xor, &pat2pop); 
    pat2cntr = pat2cntr + pat2pop; 
    pat3xor = AL[1] ^ pat31; //xor comparison 
    popcount_64 (pat3xor, &pat3pop); 
    pat3cntr = pat3cntr + pat3pop; 
    pat4xor = AL[1] ^ pat41; //xor comparison 
    popcount_64 (pat4xor, &pat4pop); 
    pat4cntr = pat4cntr + pat4pop; 
    pat5xor = AL[1] ^ pat51; //xor comparison 
    popcount_64 (pat5xor, &pat5pop); 
    pat5cntr = pat5cntr + pat5pop; 
    pat1xor = AL[2] ^ pat12; //xor comparison 
    popcount_64 (pat1xor, &pat1pop); 
    pat1cntr = pat1cntr + pat1pop; 
    pat2xor = AL[2] ^ pat22; //xor comparison 
    popcount_64 (pat2xor, &pat2pop); 
    pat2cntr = pat2cntr + pat2pop; 
    pat3xor = AL[2] ^ pat32; //xor comparison 
    popcount_64 (pat3xor, &pat3pop); 
    pat3cntr = pat3cntr + pat3pop; 
    pat4xor = AL[2] ^ pat42; //xor comparison 
    popcount_64 (pat4xor, &pat4pop); 
    pat4cntr = pat4cntr + pat4pop; 
    pat5xor = AL[2] ^ pat52; //xor comparison 
    popcount_64 (pat5xor, &pat5pop); 
    pat5cntr = pat5cntr + pat5pop; 
    pat1xor = AL[3] ^ pat13; //xor comparison 
    popcount_64 (pat1xor, &pat1pop); 
    pat1cntr = pat1cntr + pat1pop; 
    pat2xor = AL[3] ^ pat23; //xor comparison 
    popcount_64 (pat2xor, &pat2pop); 
    pat2cntr = pat2cntr + pat2pop; 
    pat3xor = AL[3] ^ pat33; //xor comparison 
    popcount_64 (pat3xor, &pat3pop); 
    pat3cntr = pat3cntr + pat3pop; 
    pat4xor = AL[3] ^ pat43; //xor comparison 
    popcount_64 (pat4xor, &pat4pop); 
    pat4cntr = pat4cntr + pat4pop; 
    pat5xor = AL[3] ^ pat53; //xor comparison 
    popcount_64 (pat5xor, &pat5pop); 
    pat5cntr = pat5cntr + pat5pop; 
    pat1xor = AL[4] ^ pat14; //xor comparison 
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    popcount_64 (pat1xor, &pat1pop); 
    pat1cntr = pat1cntr + pat1pop; 
    pat2xor = AL[4] ^ pat24; //xor comparison 
    popcount_64 (pat2xor, &pat2pop); 
    pat2cntr = pat2cntr + pat2pop; 
    pat3xor = AL[4] ^ pat34; //xor comparison 
    popcount_64 (pat3xor, &pat3pop); 
    pat3cntr = pat3cntr + pat3pop; 
    pat4xor = AL[4] ^ pat44; //xor comparison 
    popcount_64 (pat4xor, &pat4pop); 
    pat4cntr = pat4cntr + pat4pop; 
    pat5xor = AL[4] ^ pat54; //xor comparison 
    popcount_64 (pat5xor, &pat5pop); 
    pat5cntr = pat5cntr + pat5pop; 
    pat1xor = AL[5] ^ pat15; //xor comparison 
    popcount_64 (pat1xor, &pat1pop); 
    pat1cntr = pat1cntr + pat1pop; 
    pat2xor = AL[5] ^ pat25; //xor comparison 
    popcount_64 (pat2xor, &pat2pop); 
    pat2cntr = pat2cntr + pat2pop; 
    pat3xor = AL[5] ^ pat35; //xor comparison 
    popcount_64 (pat3xor, &pat3pop); 
    pat3cntr = pat3cntr + pat3pop; 
    pat4xor = AL[5] ^ pat45; //xor comparison 
    popcount_64 (pat4xor, &pat4pop); 
    pat4cntr = pat4cntr + pat4pop; 
    pat5xor = AL[5] ^ pat55; //xor comparison 
    popcount_64 (pat5xor, &pat5pop); 
    pat5cntr = pat5cntr + pat5pop; 
    pat1xor = AL[6] ^ pat16; //xor comparison 
    popcount_64 (pat1xor, &pat1pop); 
    pat1cntr = pat1cntr + pat1pop; 
    pat2xor = AL[6] ^ pat26; //xor comparison 
    popcount_64 (pat2xor, &pat2pop); 
    pat2cntr = pat2cntr + pat2pop; 
    pat3xor = AL[6] ^ pat36; //xor comparison 
    popcount_64 (pat3xor, &pat3pop); 
    pat3cntr = pat3cntr + pat3pop; 
    pat4xor = AL[6] ^ pat46; //xor comparison 
    popcount_64 (pat4xor, &pat4pop); 
    pat4cntr = pat4cntr + pat4pop; 
    pat5xor = AL[6] ^ pat56; //xor comparison 
    popcount_64 (pat5xor, &pat5pop); 
    pat5cntr = pat5cntr + pat5pop; 
    pat1xor = AL[7] ^ pat17; //xor comparison 
    popcount_64 (pat1xor, &pat1pop); 
    pat1cntr = pat1cntr + pat1pop; 
    pat2xor = AL[7] ^ pat27; //xor comparison 
    popcount_64 (pat2xor, &pat2pop); 
    pat2cntr = pat2cntr + pat2pop; 
    pat3xor = AL[7] ^ pat37; //xor comparison 
    popcount_64 (pat3xor, &pat3pop); 
    pat3cntr = pat3cntr + pat3pop; 
    pat4xor = AL[7] ^ pat47; //xor comparison 
    popcount_64 (pat4xor, &pat4pop); 
    pat4cntr = pat4cntr + pat4pop; 
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    pat5xor = AL[7] ^ pat57; //xor comparison 
    popcount_64 (pat5xor, &pat5pop); 
    pat5cntr = pat5cntr + pat5pop; 
    pat1xor = AL[8] ^ pat18; //xor comparison 
    popcount_64 (pat1xor, &pat1pop); 
    pat1cntr = pat1cntr + pat1pop; 
    pat2xor = AL[8] ^ pat28; //xor comparison 
    popcount_64 (pat2xor, &pat2pop); 
    pat2cntr = pat2cntr + pat2pop; 
    pat3xor = AL[8] ^ pat38; //xor comparison 
    popcount_64 (pat3xor, &pat3pop); 
    pat3cntr = pat3cntr + pat3pop; 
    pat4xor = AL[8] ^ pat48; //xor comparison 
    popcount_64 (pat4xor, &pat4pop); 
    pat4cntr = pat4cntr + pat4pop; 
    pat5xor = AL[8] ^ pat58; //xor comparison 
    popcount_64 (pat5xor, &pat5pop); 
    pat5cntr = pat5cntr + pat5pop; 
    pat1xor = AL[9] ^ pat19; //xor comparison 
    popcount_64 (pat1xor, &pat1pop); 
    pat1cntr = pat1cntr + pat1pop; 
    pat2xor = AL[9] ^ pat29; //xor comparison 
    popcount_64 (pat2xor, &pat2pop); 
    pat2cntr = pat2cntr + pat2pop; 
    pat3xor = AL[9] ^ pat39; //xor comparison 
    popcount_64 (pat3xor, &pat3pop); 
    pat3cntr = pat3cntr + pat3pop; 
    pat4xor = AL[9] ^ pat49; //xor comparison 
    popcount_64 (pat4xor, &pat4pop); 
    pat4cntr = pat4cntr + pat4pop; 
    pat5xor = AL[9] ^ pat59; //xor comparison 
    popcount_64 (pat5xor, &pat5pop); 
    pat5cntr = pat5cntr + pat5pop; 
    pat1xor = AL[10] ^ pat1a; //xor comparison 
    popcount_64 (pat1xor, &pat1pop); 
    pat1cntr = pat1cntr + pat1pop; 
    pat2xor = AL[10] ^ pat2a; //xor comparison 
    popcount_64 (pat2xor, &pat2pop); 
    pat2cntr = pat2cntr + pat2pop; 
    pat3xor = AL[10] ^ pat3a; //xor comparison 
    popcount_64 (pat3xor, &pat3pop); 
    pat3cntr = pat3cntr + pat3pop; 
    pat4xor = AL[10] ^ pat4a; //xor comparison 
    popcount_64 (pat4xor, &pat4pop); 
    pat4cntr = pat4cntr + pat4pop; 
    pat5xor = AL[10] ^ pat5a; //xor comparison 
    popcount_64 (pat5xor, &pat5pop); 
    pat5cntr = pat5cntr + pat5pop; 
    pat1xor = AL[11] ^ pat1b; //xor comparison 
    popcount_64 (pat1xor, &pat1pop); 
    pat1cntr = pat1cntr + pat1pop; 
    pat2xor = AL[11] ^ pat2b; //xor comparison 
    popcount_64 (pat2xor, &pat2pop); 
    pat2cntr = pat2cntr + pat2pop; 
    pat3xor = AL[11] ^ pat3b; //xor comparison 
    popcount_64 (pat3xor, &pat3pop); 
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    pat3cntr = pat3cntr + pat3pop; 
    pat4xor = AL[11] ^ pat4b; //xor comparison 
    popcount_64 (pat4xor, &pat4pop); 
    pat4cntr = pat4cntr + pat4pop; 
    pat5xor = AL[11] ^ pat5b; //xor comparison 
    popcount_64 (pat5xor, &pat5pop); 
    pat5cntr = pat5cntr + pat5pop; 
    pat1xor = AL[12] ^ pat1c; //xor comparison 
    popcount_64 (pat1xor, &pat1pop); 
    pat1cntr = pat1cntr + pat1pop; 
    pat2xor = AL[12] ^ pat2c; //xor comparison 
    popcount_64 (pat2xor, &pat2pop); 
    pat2cntr = pat2cntr + pat2pop; 
    pat3xor = AL[12] ^ pat3c; //xor comparison 
    popcount_64 (pat3xor, &pat3pop); 
    pat3cntr = pat3cntr + pat3pop; 
    pat4xor = AL[12] ^ pat4c; //xor comparison 
    popcount_64 (pat4xor, &pat4pop); 
    pat4cntr = pat4cntr + pat4pop; 
    pat5xor = AL[12] ^ pat5c; //xor comparison 
    popcount_64 (pat5xor, &pat5pop); 
    pat5cntr = pat5cntr + pat5pop; 
    pat1xor = AL[13] ^ pat1d; //xor comparison 
    popcount_64 (pat1xor, &pat1pop); 
    pat1cntr = pat1cntr + pat1pop; 
    pat2xor = AL[13] ^ pat2d; //xor comparison 
    popcount_64 (pat2xor, &pat2pop); 
    pat2cntr = pat2cntr + pat2pop; 
    pat3xor = AL[13] ^ pat3d; //xor comparison 
    popcount_64 (pat3xor, &pat3pop); 
    pat3cntr = pat3cntr + pat3pop; 
    pat4xor = AL[13] ^ pat4d; //xor comparison 
    popcount_64 (pat4xor, &pat4pop); 
    pat4cntr = pat4cntr + pat4pop; 
    pat5xor = AL[13] ^ pat5d; //xor comparison 
    popcount_64 (pat5xor, &pat5pop); 
    pat5cntr = pat5cntr + pat5pop; 
    pat1xor = AL[14] ^ pat1e; //xor comparison 
    popcount_64 (pat1xor, &pat1pop); 
    pat1cntr = pat1cntr + pat1pop; 
    pat2xor = AL[14] ^ pat2e; //xor comparison 
    popcount_64 (pat2xor, &pat2pop); 
    pat2cntr = pat2cntr + pat2pop; 
    pat3xor = AL[14] ^ pat3e; //xor comparison 
    popcount_64 (pat3xor, &pat3pop); 
    pat3cntr = pat3cntr + pat3pop; 
    pat4xor = AL[14] ^ pat4e; //xor comparison 
    popcount_64 (pat4xor, &pat4pop); 
    pat4cntr = pat4cntr + pat4pop; 
    pat5xor = AL[14] ^ pat5e; //xor comparison 
    popcount_64 (pat5xor, &pat5pop); 
    pat5cntr = pat5cntr + pat5pop; 
    pat1xor = AL[15] ^ pat1f; //xor comparison 
    popcount_64 (pat1xor, &pat1pop); 
    pat1cntr = pat1cntr + pat1pop; 
    pat2xor = AL[15] ^ pat2f; //xor comparison 
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    popcount_64 (pat2xor, &pat2pop); 
    pat2cntr = pat2cntr + pat2pop; 
    pat3xor = AL[15] ^ pat3f; //xor comparison 
    popcount_64 (pat3xor, &pat3pop); 
    pat3cntr = pat3cntr + pat3pop; 
    pat4xor = AL[15] ^ pat4f; //xor comparison 
    popcount_64 (pat4xor, &pat4pop); 
    pat4cntr = pat4cntr + pat4pop; 
    pat5xor = AL[15] ^ pat5f; //xor comparison 
    popcount_64 (pat5xor, &pat5pop); 
    pat5cntr = pat5cntr + pat5pop; 
    patnum = pat5name; 
    patholder = pat5cntr; 
    if (pat4cntr < patholder){ 
 patnum = pat4name;  
 patholder = pat4cntr;} 
    if (pat3cntr < patholder){ 
 patnum = pat3name;  
 patholder = pat3cntr;} 
    if (pat2cntr < patholder){ 
 patnum = pat2name;  
 patholder = pat2cntr;} 
    if (pat1cntr < patholder){ 
 patnum = pat1name;  
 patholder = pat1cntr;} 
 
    if (patholder > 102){ 
 patnum = 0; } //Threshold for "no match" criteria is 103 pixels off, 10% discrepancy 
 
   *Out0 = pat1cntr; 
   *Out1 = pat2cntr;     
   *Out2 = pat3cntr; 
   *Out3 = pat4cntr;     
   *Out4 = pat5cntr; 
   *Out5= patnum; 
      
    read_timer (&t1); 
 
    *time = t1 - t0; 
 
    } 
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APPENDIX K. OUTPUT OF RECONFIGURABLE XOR 
COMPARITOR 

./ex07 p4input64 
65 clocks 
Difference Output= Pattern 1(0) 
Difference Output= Pattern 2(159) 
Difference Output= Pattern 3(165) 
Difference Output= Pattern 4(180) 
Difference Output= Pattern 5(97) 
Closest Match is Pattern 1 
Which is: P4 Image 
 
./ex07 t4input64 
65 clocks 
Difference Output= Pattern 1(159) 
Difference Output= Pattern 2(0) 
Difference Output= Pattern 3(202) 
Difference Output= Pattern 4(187) 
Difference Output= Pattern 5(136) 
Closest Match is Pattern 2 
Which is: T4 Image 
 
./ex07 t3input64 
65 clocks 
Difference Output= Pattern 1(165) 
Difference Output= Pattern 2(202) 
Difference Output= Pattern 3(0) 
Difference Output= Pattern 4(175) 
Difference Output= Pattern 5(128) 
Closest Match is Pattern 3 
Which is: T3 Image 
 
./ex07 t2input64 
65 clocks 
Difference Output= Pattern 1(180) 
Difference Output= Pattern 2(187) 
Difference Output= Pattern 3(175) 
Difference Output= Pattern 4(0) 
Difference Output= Pattern 5(143) 
Closest Match is Pattern 4 
Which is: T2 Image 
 
./ex07 noinput64 
60 clocks 
Difference Output= Pattern 1(97) 
Difference Output= Pattern 2(136) 
Difference Output= Pattern 3(128) 
Difference Output= Pattern 4(143) 
Difference Output= Pattern 5(0) 
Closest Match is Pattern 5 
Which is: No Image 
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APPENDIX L.  SEQUENTIAL-PROCESSOR EXCLUSIVE-OR 
(XOR) COMPARITOR CODE 

//////////////////////////////////////////////////////////////////////////// 
//xorcomp.c 
//Exclusive-Or Comparitor program for Image Classification in C++ 
//Written by LT Scott P. Bailey, USN  
//NOV 2006 
//This code may be freely used and modified at will 
//////////////////////////////////////////////////////////////////////////// 
 
#include <iostream.h> 
#include <stdlib.h> 
#include <stdio.h> 
#include <time.h> 
#include <math.h> 
using std::cout; 
using std::endl; 
 
 
//// Data dependent settings //// 
#define numPatterns  5 //This program X-OR compares 5 'images' approximated from 
//Prof. Pace's book 'Low Probability of Intercept Radar':  The order of 
//images in the patimg array is:  P4, T4, T3, T2, and NoInput, an array of 
//zeros.  Additional images can be appended to the end as long as 'numPatterns' 
//is revised.  Note that these images are the same as those used for the neural 
//network program 
 
//// global variables //// 
int patnum = 0; 
int pattmp = 0; //pattern line holder 
int imgtmp = 0; //input image line holder 
int xortmp = 0; //xor result line holder 
int patresult[numPatterns] = {0,0,0,0,0}; 
FILE *inimage; 
 
//the data 
int patimg[numPatterns][32] = { { 0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 
0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 
0x00000000 , 0x40080180 , 0xc0180700 , 0x80700600 , 0x00e01c00 , 0x01c03c01 , 0x03803007 , 0x0700600e , 
0x0e00e01c , 0x1c01c038 , 0x38038070 , 0x700700e0 , 0xe00e01c0 , 0x800401c0 , 0x00000000 , 0x00000000 , 
0x00000000 , 0x00000000 } , { 0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 
0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 
0x00000000 , 0x00000000 , 0x00000000 , 0x80401008 , 0xc0e0381c , 0xa050140a , 0x70380e07 , 0x2c160582 , 
0x1e0f03c1 , 0x3f1f87e3 , 0x1e0f03c1 , 0x2c160582 , 0x70380e07 , 0xa050140a , 0xc0e0381c , 0x80401008 , 
0x00000000 , 0x00000000 } , { 0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 
0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 
0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 0x06060606 , 0x0f0f0f0f , 0x26262626 , 0x70707070 , 
0xe0e0e0e0 , 0xc0c0c0c0 , 0xe0e0e0e0 , 0x70707070 , 0x26262626 , 0x0f0f0f0f , 0x06060606 , 0x00000000 , 
0x00000000 , 0x00000000 } , { 0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 
0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 
0x00000000 , 0x00000000 , 0x00000040 , 0x020380e0 , 0x0707c0a0 , 0x0d9381b6 , 0x3df00fff , 0x47081847 , 
0x976c375a , 0xb70c1846 , 0x07380ffe , 0xfdf000e6 , 0x8d906040 , 0x07003000 , 0x02000000 , 0x00000000 , 
0x00000000 , 0x00000000 } , { 0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 
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0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 
0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 
0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , 
0x00000000 , 0x00000000 } }; 
//These are the five pattern images in a multiple-subscripted array.  Additional images can be appended to the end  ^ 
//where the carat is as long as the const 'numPatterns' is updated to reflect the change. 
char patname[numPatterns][20] = {"P4 Image" , "T4 Image" , "T3 Image" , "T2 Image" , "No Image" }; 
int imagearr[32]; 
 
int main (int argc, char *argv[])  
{ 
 const int wid = 32; //width of bitmap in bits 
 const int len = 32;  //length of bitmap in lines 
 int cnt1,cnt2,cnt3; 
 int sumtmp = 0; 
 int lowdelta = 0; 
 int nameindex = 0; 
 int trials = 0;  //placeholder for 10000 trials loop 
 time_t start, finish; //timing variables 
 double timediff = 0; //difference calc 
 if (argc < 2) { 
  fprintf (stderr, "Usage: ./xorcomp inputfile\n"); 
  exit (1); 
  } 
 inimage = fopen (argv[1],"rt");  //input of image data, 32 lines of 32-bit hex ascii (8 char) each. 
       
 if ( !inimage ) { 
  fprintf (stderr, "%s could not be opened.\n", argv[ 1 ]); 
  exit (1); 
  } 
 for (cnt1 = 0; cnt1 < len; cnt1++) 
 { 
 fscanf(inimage,"%lx",&imgtmp); 
 imagearr[cnt1] = imgtmp; 
 } 
 
 fclose(inimage); 
 
 start = clock(); 
 
 for (trials = 0; trials < 10000; trials++) 
 { 
 patresult[0] = 0; 
 patresult[1] = 0; 
 patresult[2] = 0; 
 patresult[3] = 0; 
 patresult[4] = 0; 
  
  
 for (cnt1 = 0; cnt1 < len; cnt1++)  
 { 
  for (cnt2 = 0; cnt2 < numPatterns; cnt2++) 
  { 
  pattmp = patimg[cnt2][cnt1]; 
  xortmp = imagearr[cnt1] ^ pattmp; 
  for (cnt3 = 0; cnt3 < wid; cnt3++)  
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   { 
   sumtmp = sumtmp + (abs(xortmp%2)); //counts ones in the least significant value 
position 
   xortmp >> 1;  //shifts to move ones to the right. 
   } // end inner for loop and one line of code 
  patresult[cnt2] = patresult[cnt2] + sumtmp; 
  sumtmp = 0; 
  } //end middle loop, resetting sumtmp and updating patresult 
 }  //end outer loop and should have complete hex bitmap 
  //ready for use in the SRC 
 } //end of trials loop  
 finish = clock(); 
 timediff = ((double)(finish - start))/CLOCKS_PER_SEC; 
 printf("Time to complete 10000 trials (in seconds): %.3ft \n",timediff); 
 printf("Number of Different bits for P4 Image -->(%d) \n",patresult[0]); 
 printf("Number of Different bits for T4 Image -->(%d) \n",patresult[1]); 
 printf("Number of Different bits for T3 Image -->(%d) \n",patresult[2]); 
 printf("Number of Different bits for T2 Image -->(%d) \n",patresult[3]); 
 printf("Number of Different bits for No Image -->(%d) \n",patresult[4]); 
 lowdelta = patresult[0]; 
 for (cnt1 = 1; cnt1 < numPatterns; cnt1++) 
 { 
  if (lowdelta > patresult[cnt1]) { 
   lowdelta = patresult[cnt1]; 
   nameindex = cnt1; 
   } 
 } 
 printf("Since the lowest delta is %d, this image most closely resembles: \n",lowdelta); 
 cout << patname[nameindex] << endl;  
 
 
 return 0; 
}//end main 
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